Solveeit Logo

Question

Question: For any differentiable function y = f(x), the value of \(\frac{d^{2}y}{dx^{2}} + \left( \frac{dy}{d...

For any differentiable function y = f(x), the value of

d2ydx2+(dydx)3d2xdy2\frac{d^{2}y}{dx^{2}} + \left( \frac{dy}{dx} \right)^{3}\frac{d^{2}x}{dy^{2}} is

A

Always zero

B

Always non-zero

C

Equal to 2y2

D

Equal to x2

Answer

Always zero

Explanation

Solution

(dydx)=(dxdy)1\left( \frac{dy}{dx} \right) = \left( \frac{dx}{dy} \right)^{–1} for a differentiable coefficient

or d2ydx2=1(dxdy)2ddy(dxdy)dydx\frac{d^{2}y}{dx^{2}} = –1\left( \frac{dx}{dy} \right)^{–2}\frac{d}{dy}\left( \frac{dx}{dy} \right)\frac{dy}{dx} =(dxdy)2d2xdy2(dydx)–\left( \frac{dx}{dy} \right)^{–2}\frac{d^{2}x}{dy^{2}}\left( \frac{dy}{dx} \right)

= –d2xdy2(dydx)3\frac{d^{2}x}{dy^{2}}\left( \frac{dy}{dx} \right)^{3} or d2ydx2+(dydx)3d2xdy2=0\frac{d^{2}y}{dx^{2}} + \left( \frac{dy}{dx} \right)^{3}\frac{d^{2}x}{dy^{2}} = 0