Solveeit Logo

Question

Question: For any differentiable function y = f(x), the value of \(\frac{d^{2}y}{dx^{2}}\) + \(\left( \frac ...

For any differentiable function y = f(x), the value of d2ydx2\frac{d^{2}y}{dx^{2}} +

(dydx)3\left( \frac { d y } { d x } \right) ^ { 3 } d2xdy2\frac{d^{2}x}{dy^{2}} is –

A

Always zero

B

Always non-zero

C

Equal to 2y2

D

Equal to x2

Answer

Always zero

Explanation

Solution

(dydx)=(dxdy)1\left( \frac{dy}{dx} \right) = \left( \frac{dx}{dy} \right)^{- 1} for a differentiable coefficient

or d2ydx2\frac{d^{2}y}{dx^{2}} = – 1 (dxdy)2\left( \frac{dx}{dy} \right)^{- 2}(dxdy)dydx\left( \frac{dx}{dy} \right)\frac{dy}{dx}

= –(dxdy)2\left( \frac{dx}{dy} \right)^{- 2}(dydx)\left( \frac{dy}{dx} \right)

= –(dydx)3\left( \frac{dy}{dx} \right)^{3} or

d2ydx2\frac{d^{2}y}{dx^{2}} + d2xdy2\frac{d^{2}x}{dy^{2}} = 0