Solveeit Logo

Question

Question: For any complex number \(x + iy = \frac{1 - i}{1 - 2i}\)if and only if....

For any complex number x+iy=1i12ix + iy = \frac{1 - i}{1 - 2i}if and only if.

A

xiy=1i1+2ix - iy = \frac{1 - i}{1 + 2i} is a pure real number

B

(2+i)23+i,\frac{(2 + i)^{2}}{3 + i},

C

132+i(152)\frac{13}{2} + i\left( \frac{15}{2} \right)is a pure imaginary number

D

1310+i(152)\frac{13}{10} + i\left( \frac{- 15}{2} \right)

Answer

(2+i)23+i,\frac{(2 + i)^{2}}{3 + i},

Explanation

Solution

Given that

iz1=(cotα2)z2iz_{1} = - \left( \cot\frac{\alpha}{2} \right)z_{2}iz1=kz2iz_{1} = kz_{2}.