Question
Question: For any complex number w = a + bi, where a, b Ī R. If w = cos 40<sup>0</sup> + i sin 40<sup>0</sup>...
For any complex number w = a + bi, where a, b Ī R. If w =
cos 400 + i sin 400, then |w + 2w2 + 3w3 + ……+ 9w9|–1 equals:
A
91sin 400
B
92sin 200
C
91cos 400
D
29cosec 200
Answer
92sin 200
Explanation
Solution
Sol. S = W + 2W2 + … + 9W9
WS = W2 + …..+ 8W9 + 9W9
________________________
S (1–W) = W + … + W9 – 9W9
S (1 –W) = 1−WW(1−W9)– 9W9
1 –W9 = 1 – cos 3600 – i sin 3600 = 0
S = –1−W9W9= –1−W9=
1−cos40∘−isin40∘−9
1– W = 1 – cos 400–i sin 400
= 2 sin2 200 –2i sin 200cos200
= 2 sin 200 (sin 200–i cos 200)
= –2i sin 200 (cos200–i sin 200)
|1– w| = 2 sin 200
|S| = 2sin20∘9 Ž |S|–1 = 92sin20∘