Solveeit Logo

Question

Question: For any complex number w = a + bi, where a, b Ī R. If w = cos 40<sup>0</sup> + i sin 40<sup>0</sup>...

For any complex number w = a + bi, where a, b Ī R. If w =

cos 400 + i sin 400, then |w + 2w2 + 3w3 + ……+ 9w9|–1 equals:

A

19\frac{1}{9}sin 400

B

29\frac{2}{9}sin 200

C

19\frac{1}{9}cos 400

D

92\frac{9}{2}cosec 200

Answer

29\frac{2}{9}sin 200

Explanation

Solution

Sol. S = W + 2W2 + … + 9W9

WS = W2 + …..+ 8W9 + 9W9

________________________

S (1–W) = W + … + W9 – 9W9

S (1 –W) = W(1W9)1W\frac{W(1 - W^{9})}{1 - W}– 9W9

1 –W9 = 1 – cos 3600 – i sin 3600 = 0

S = –9W91W\frac{9W^{9}}{1 - W}= –91W\frac{9}{1 - W}=

91cos40isin40\frac{- 9}{1 - \cos 40{^\circ} - i\sin 40{^\circ}}

1– W = 1 – cos 400–i sin 400

= 2 sin2 200 –2i sin 200cos200

= 2 sin 200 (sin 200–i cos 200)

= –2i sin 200 (cos200–i sin 200)

|1– w| = 2 sin 200

|S| = 92sin20\frac{9}{2\sin 20{^\circ}} Ž |S|–1 = 2sin209\frac{2\sin 20{^\circ}}{9}