Solveeit Logo

Question

Question: For any \[a,b,x,y > 0\], prove that if: \[\dfrac{2}{3}{\tan ^{ - 1}}\left( {\dfrac{{3a{b^2} - {a^3}}...

For any a,b,x,y>0a,b,x,y > 0, prove that if: 23tan1(3ab2a3b33a2b)+23tan1(3xy2x3y33x2y)=tan12αβα2β2\dfrac{2}{3}{\tan ^{ - 1}}\left( {\dfrac{{3a{b^2} - {a^3}}}{{{b^3} - 3{a^2}b}}} \right) + \dfrac{2}{3}{\tan ^{ - 1}}\left( {\dfrac{{3x{y^2} - {x^3}}}{{{y^3} - 3{x^2}y}}} \right) = {\tan ^{ - 1}}\dfrac{{2\alpha \beta }}{{{\alpha ^2} - {\beta ^2}}}, then α=ax+by,β=bx+ay\alpha = - ax + by,\beta = bx + ay.

Explanation

Solution

Here, we will simplify the equation and then solve it by using the basic trigonometric function. Then by comparing the left hand side and right hand side of the equation we will get the value of α,β\alpha ,\beta .

Complete step by step solution:
Given equation is 23tan1(3ab2a3b33a2b)+23tan1(3xy2x3y33x2y)=tan12αβα2β2\dfrac{2}{3}{\tan ^{ - 1}}\left( {\dfrac{{3a{b^2} - {a^3}}}{{{b^3} - 3{a^2}b}}} \right) + \dfrac{2}{3}{\tan ^{ - 1}}\left( {\dfrac{{3x{y^2} - {x^3}}}{{{y^3} - 3{x^2}y}}} \right) = {\tan ^{ - 1}}\dfrac{{2\alpha \beta }}{{{\alpha ^2} - {\beta ^2}}}.
First, we will divide the numerator and denominator of the first term of the LHS of the equation by b3{b^3}. Therefore, we get
23tan1(3ab2a3b3b33a2bb3)+23tan1(3xy2x3y33x2y)=tan12αβα2β2\Rightarrow \dfrac{2}{3}{\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{3a{b^2} - {a^3}}}{{{b^3}}}}}{{\dfrac{{{b^3} - 3{a^2}b}}{{{b^3}}}}}} \right) + \dfrac{2}{3}{\tan ^{ - 1}}\left( {\dfrac{{3x{y^2} - {x^3}}}{{{y^3} - 3{x^2}y}}} \right) = {\tan ^{ - 1}}\dfrac{{2\alpha \beta }}{{{\alpha ^2} - {\beta ^2}}}
23tan1(3aba3b313a2b2)+23tan1(3xy2x3y33x2y)=tan12αβα2β2\Rightarrow \dfrac{2}{3}{\tan ^{ - 1}}\left( {\dfrac{{3\dfrac{a}{b} - \dfrac{{{a^3}}}{{{b^3}}}}}{{1 - 3\dfrac{{{a^2}}}{{{b^2}}}}}} \right) + \dfrac{2}{3}{\tan ^{ - 1}}\left( {\dfrac{{3x{y^2} - {x^3}}}{{{y^3} - 3{x^2}y}}} \right) = {\tan ^{ - 1}}\dfrac{{2\alpha \beta }}{{{\alpha ^2} - {\beta ^2}}}
Now we will divide the numerator and denominator of the second term of the LHS of the equation by y3{y^3}. Therefore, we get
23tan1(3aba3b313a2b2)+23tan1(3xy2x3y3y33x2yy3)=tan12αβα2β2\Rightarrow \dfrac{2}{3}{\tan ^{ - 1}}\left( {\dfrac{{3\dfrac{a}{b} - \dfrac{{{a^3}}}{{{b^3}}}}}{{1 - 3\dfrac{{{a^2}}}{{{b^2}}}}}} \right) + \dfrac{2}{3}{\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{3x{y^2} - {x^3}}}{{{y^3}}}}}{{\dfrac{{{y^3} - 3{x^2}y}}{{{y^3}}}}}} \right) = {\tan ^{ - 1}}\dfrac{{2\alpha \beta }}{{{\alpha ^2} - {\beta ^2}}}
23tan1(3aba3b313a2b2)+23tan1(3xyx3y313x2y2)=tan12αβα2β2\Rightarrow \dfrac{2}{3}{\tan ^{ - 1}}\left( {\dfrac{{3\dfrac{a}{b} - \dfrac{{{a^3}}}{{{b^3}}}}}{{1 - 3\dfrac{{{a^2}}}{{{b^2}}}}}} \right) + \dfrac{2}{3}{\tan ^{ - 1}}\left( {\dfrac{{3\dfrac{x}{y} - \dfrac{{{x^3}}}{{{y^3}}}}}{{1 - 3\dfrac{{{x^2}}}{{{y^2}}}}}} \right) = {\tan ^{ - 1}}\dfrac{{2\alpha \beta }}{{{\alpha ^2} - {\beta ^2}}}
Now we will let ab=tanθ\dfrac{a}{b} = \tan \theta and xy=tanϕ\dfrac{x}{y} = \tan \phi also we get θ=tan1ab\theta = {\tan ^{ - 1}}\dfrac{a}{b} and ϕ=tan1xy\phi = {\tan ^{ - 1}}\dfrac{x}{y}. Therefore, by putting this value in the above equation we get
23tan1(3tanθtan3θ13tan2θ)+23tan1(3tanϕtan3ϕ13tan2ϕ)=tan12αβα2β2\Rightarrow \dfrac{2}{3}{\tan ^{ - 1}}\left( {\dfrac{{3\tan \theta - {{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }}} \right) + \dfrac{2}{3}{\tan ^{ - 1}}\left( {\dfrac{{3\tan \phi - {{\tan }^3}\phi }}{{1 - 3{{\tan }^2}\phi }}} \right) = {\tan ^{ - 1}}\dfrac{{2\alpha \beta }}{{{\alpha ^2} - {\beta ^2}}}
We know that the value of the tan3θ\tan 3\theta is tan3θ=3tanθtan3θ13tan2θ\tan 3\theta = \dfrac{{3\tan \theta - {{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }}. Therefore, we get
23tan1(tan3θ)+23tan1(tan3ϕ)=tan12αβα2β2\Rightarrow \dfrac{2}{3}{\tan ^{ - 1}}\left( {\tan 3\theta } \right) + \dfrac{2}{3}{\tan ^{ - 1}}\left( {\tan 3\phi } \right) = {\tan ^{ - 1}}\dfrac{{2\alpha \beta }}{{{\alpha ^2} - {\beta ^2}}}
Now the inverse function term will cancel out with the normal function, we get
23×3θ+23×3ϕ=tan12αβα2β2\Rightarrow \dfrac{2}{3} \times 3\theta + \dfrac{2}{3} \times 3\phi = {\tan ^{ - 1}}\dfrac{{2\alpha \beta }}{{{\alpha ^2} - {\beta ^2}}}
2θ+2ϕ=tan12αβα2β2\Rightarrow 2\theta + 2\phi = {\tan ^{ - 1}}\dfrac{{2\alpha \beta }}{{{\alpha ^2} - {\beta ^2}}}
Now we will put the value of θ,ϕ\theta ,\phi in the above equation, we get
2tan1ab+2tan1xy=tan12αβα2β2\Rightarrow 2{\tan ^{ - 1}}\dfrac{a}{b} + 2{\tan ^{ - 1}}\dfrac{x}{y} = {\tan ^{ - 1}}\dfrac{{2\alpha \beta }}{{{\alpha ^2} - {\beta ^2}}}
2(tan1ab+tan1xy)=tan12αβα2β2\Rightarrow 2\left( {{{\tan }^{ - 1}}\dfrac{a}{b} + {{\tan }^{ - 1}}\dfrac{x}{y}} \right) = {\tan ^{ - 1}}\dfrac{{2\alpha \beta }}{{{\alpha ^2} - {\beta ^2}}}
We know the formula of the tan1A+tan1B{\tan ^{ - 1}}A + {\tan ^{ - 1}}B which is equals to tan1A+tan1B=tan1A+B1AB{\tan ^{ - 1}}A + {\tan ^{ - 1}}B = {\tan ^{ - 1}}\dfrac{{A + B}}{{1 - AB}}, we get
2(tan1ab+xy1abxy)=tan12αβα2β2\Rightarrow 2\left( {{{\tan }^{ - 1}}\dfrac{{\dfrac{a}{b} + \dfrac{x}{y}}}{{1 - \dfrac{a}{b}\dfrac{x}{y}}}} \right) = {\tan ^{ - 1}}\dfrac{{2\alpha \beta }}{{{\alpha ^2} - {\beta ^2}}}
Now we will solve and simplify this equation, we get
2(tan1ay+bxbybyaxby)=tan12αβα2β2\Rightarrow 2\left( {{{\tan }^{ - 1}}\dfrac{{\dfrac{{ay + bx}}{{by}}}}{{\dfrac{{by - ax}}{{by}}}}} \right) = {\tan ^{ - 1}}\dfrac{{2\alpha \beta }}{{{\alpha ^2} - {\beta ^2}}}
2(tan1ay+bxbyax)=tan12αβα2β2\Rightarrow 2\left( {{{\tan }^{ - 1}}\dfrac{{ay + bx}}{{by - ax}}} \right) = {\tan ^{ - 1}}\dfrac{{2\alpha \beta }}{{{\alpha ^2} - {\beta ^2}}}
Now we will simplify the RHS of the equation. We will divide the numerator and denominator of the RHS of the equation by α2{\alpha ^2}, we get
2(tan1ay+bxbyax)=tan12αβα2α2β2α2=tan12βα1β2α2\Rightarrow 2\left( {{{\tan }^{ - 1}}\dfrac{{ay + bx}}{{by - ax}}} \right) = {\tan ^{ - 1}}\dfrac{{\dfrac{{2\alpha \beta }}{{{\alpha ^2}}}}}{{\dfrac{{{\alpha ^2} - {\beta ^2}}}{{{\alpha ^2}}}}} = {\tan ^{ - 1}}\dfrac{{2\dfrac{\beta }{\alpha }}}{{1 - \dfrac{{{\beta ^2}}}{{{\alpha ^2}}}}}
We know that the formula of 2tan1A=tan12A1A22{\tan ^{ - 1}}A = {\tan ^{ - 1}}\dfrac{{2A}}{{1 - {A^2}}}. Therefore, by comparing the RHS of the equation with this formula we get
2tan1ay+bxbyax=2tan1βα\Rightarrow 2{\tan ^{ - 1}}\dfrac{{ay + bx}}{{by - ax}} = 2{\tan ^{ - 1}}\dfrac{\beta }{\alpha }
Now by simply comparing the LHS and RHS of the equation we get the value of α,β\alpha ,\beta , we get
α=ax+by\alpha = - ax + by and β=bx+ay\beta = bx + ay
Hence, proved.

Note:
For solving this question, we need to know different trigonometric identities and formulas. If we know the trigonometric identities then we will be able to understand what we need to do such that the given expression is converted into one of the identities. Trigonometric identities are derived from six basic trigonometric ratios and can be only used in an equation or expression where trigonometric function is involved.