Solveeit Logo

Question

Question: For any 3 x 3 matrix M, let |M| denote the determinant of M. Let \[A = \begin{bmatrix} 1 & 3 & 9...

For any 3 x 3 matrix M, let |M| denote the determinant of M.
Let

B = \begin{bmatrix} 10 & 2 & 2 \\[6pt] 11 & 3 & 1 \\[6pt] 9 & 1 & 3 \end{bmatrix}, C = \begin{bmatrix} 0 & 1 & 0 \\[4pt] 1 & 0 & 0 \\[4pt] 1 & 0 & 0 \end{bmatrix}.$$ If $$D = \begin{bmatrix} 1 & 5 & 2 \\[4pt] 3 & 7 & 4 \\[4pt] 2 & m & 1 \end{bmatrix}$$ is a matrix such that $m \ge 2$, then which of the following statements is(are) correct?
A

(AD)2024>AD2023|(AD)^{2024}| > |AD|^{2023}

B

AD+C2BD1=AD+CBD1\bigl|AD + C^{2} B D^{-1}\bigr| = |AD| + \bigl|C B D^{-1}\bigr|

C

B=CACB = C A C and C3=[100010001]C^{3} = \begin{bmatrix}1 & 0 & 0 \\[4pt]0 & 1 & 0 \\[4pt]0 & 0 & 1\end{bmatrix}

D

C2024B2C2024=AC2AC^{2024}\,B^{2}\,C^{2024} = A\,C^{2}\,A

Answer

None of the above

Explanation

Solution

1. detA=0\det A = 0
Compute detA\det A:

detA=1(211101)    3(211103)  +  9(2123)=123(8)+9(4)=12+2436=0.\det A = 1\,(2\cdot11 - 10\cdot1)\;-\;3\,(2\cdot11 - 10\cdot3)\;+\;9\,(2\cdot1 - 2\cdot3) = 12 -3(-8) +9(-4) = 12 +24 -36 = 0.

Thus det(AD)=detAdetD=0\det(AD)=\det A\cdot\det D=0.

  • Statement A: (AD)2024=(detAD)2024=0\bigl|\,(AD)^{2024}\bigr| = (\det AD)^{2024}=0, and AD2023=0|AD|^{2023}=0. So 0>00>0 is false.

2. Additivity of determinants fails in general.
There is no general formula det(X+Y)=detX+detY\det(X+Y)=\det X+\det Y. Hence B is false.

3. Powers of CC.
One finds C3=CIC^3 = C\neq I. Also direct multiplication shows CACBCAC\neq B. So C is false.

4. Even powers of CC.
Since C2C0C^2\neq C^0 and CnC^n alternates between CC and C2C^2, one checks C2024=C2C^{2024}=C^2. But C2B2C2AC2AC^2\,B^2\,C^2\neq A\,C^2\,A. So D is false.

Therefore none of the given options is correct.