Solveeit Logo

Question

Mathematics Question on Matrices

For any 3×33 \times 3 matrix MM, let M|M| denote the determinant of MM. Let II be the 3×33 \times 3 identity matrix Let EE and FF be two 3×33 \times 3 matrices such that (IEF)( I - EF ) is invertible. If G=(IEF)1G =( I - EF )^{-1}, then which of the following statements is(are) TRUE?

A

FE=IFEFGE| FE |=| I - FE || FGE |

B

(IFE)(I+FGE)=I( I - FE )( I + FGE )= I

C

EFG=GEFEFG = GEF

D

(IFE)(IFGE)=I( I - FE )( I - FGE )= I

Answer

FE=IFEFGE| FE |=| I - FE || FGE |

Explanation

Solution

IEF=G1I – EF = G^{–1}

GGEF=I(1)G – GEF = I …(1)

And GEFG=I(2)G – EFG = I …(2)

Clearly GEF=EFGGEF = EFG (option C is correct)

Also (IFE)(I+FGE)=IFE+FGEFE+FGE(I – FE)(I + FGE) = I – FE + FGE – FE + FGE

=IFE+FGEF(GI)E= I – FE + FGE – F(G – I)E

=IFE+FGEFGE+FE= I – FE + FGE – FGE + FE

=I= I (option B is correct and D is incorrect)

Now, (IFE)(IFGE)=IFEFGE+F(GI)E(I – FE)(I – FGE) = I – FE – FGE + F(G – I)E

=I2FE= I – 2FE

(IFE)(FGE)=FE(I – FE)(- FGE) = – FE

IFEFGE=FE|I – FE||FGE| = |FE|