Question
Mathematics Question on Matrices
For any 3×3 matrix M, let ∣M∣ denote the determinant of M. Let I be the 3×3 identity matrix Let E and F be two 3×3 matrices such that (I−EF) is invertible. If G=(I−EF)−1, then which of the following statements is(are) TRUE?
A
∣FE∣=∣I−FE∣∣FGE∣
B
(I−FE)(I+FGE)=I
C
EFG=GEF
D
(I−FE)(I−FGE)=I
Answer
∣FE∣=∣I−FE∣∣FGE∣
Explanation
Solution
I–EF=G–1
G–GEF=I…(1)
And G–EFG=I…(2)
Clearly GEF=EFG (option C is correct)
Also (I–FE)(I+FGE)=I–FE+FGE–FE+FGE
=I–FE+FGE–F(G–I)E
=I–FE+FGE–FGE+FE
=I (option B is correct and D is incorrect)
Now, (I–FE)(I–FGE)=I–FE–FGE+F(G–I)E
=I–2FE
(I–FE)(−FGE)=–FE
∣I–FE∣∣FGE∣=∣FE∣