Solveeit Logo

Question

Mathematics Question on Matrices

For any 3×33 \times 3 matrix MM, let M| M | denote the determinant of MM. Let
E=[123\234\81318],P=[100\001\010]E=\begin{bmatrix}1 & 2 & 3 \\\2 & 3 & 4 \\\8 & 13 & 18\end{bmatrix}, P=\begin{bmatrix} 1 & 0 & 0 \\\0 & 0 & 1 \\\0 & 1 & 0\end{bmatrix} and F=[132 81813 243]F=\begin{bmatrix} 1 & 3 & 2 \\\ 8 & 18 & 13 \\\ 2 & 4 & 3 \end{bmatrix}
If QQ is a non-singular matrix of order 3×33 \times 3, then which of the following statements is(are) TRUE?

A

F=PEPF = PEP and P2=[100 010 001]P ^{2}=\begin{bmatrix}1 & 0 & 0 \\\ 0 & 1 & 0 \\\ 0 & 0 & 1\end{bmatrix}

B

EQ+PFQ1=EQ+PFQ1\left| EQ + PFQ ^{-1}\right|=| EQ |+\left| PFQ ^{-1}\right|

C

(EF)3>EF2\left|( EF )^{3}\right|>| EF |^{2}

D

Sum of the diagonal entries of P1EP+FP^{-1} E P+F is equal to the sum of diagonal entries of E+P1FPE+P^{-1} F P

Answer

F=PEPF = PEP and P2=[100 010 001]P ^{2}=\begin{bmatrix}1 & 0 & 0 \\\ 0 & 1 & 0 \\\ 0 & 0 & 1\end{bmatrix}

Explanation

Solution

The correct options are:
(A) F=PEPF = PEP and P2=[100 010 001]P ^{2}=\begin{bmatrix}1 & 0 & 0 \\\ 0 & 1 & 0 \\\ 0 & 0 & 1\end{bmatrix}
(B) EQ+PFQ1=EQ+PFQ1\left| EQ + PFQ ^{-1}\right|=| EQ |+\left| PFQ ^{-1}\right|
(D) Sum of the diagonal entries of P1EP+FP^{-1} E P+F is equal to the sum of diagonal entries of E+P1FPE+P^{-1} F P