Solveeit Logo

Question

Mathematics Question on Determinants

For any 2 ×\times 2 matrix A, if A (adj. A) = [100 010]\begin{bmatrix}10&0\\\ 0&10\end{bmatrix} en | A | is equal to :

A

0

B

10

C

20

D

100

Answer

10

Explanation

Solution

Let A be any 2 ? 2 matrix. Given A (adj A) = [100 010]\begin{bmatrix}10&0\\\ 0&10\end{bmatrix} \Rightarrow A (adj A) = 10 [10 01]\begin{bmatrix}1 &0\\\ 0&1 \end{bmatrix} = 10I ....(i) where I = identity matrix of order 2 ×\times 2. We know A1=1AA^{-1} = \frac{1}{|A|} (Adj.A) Pre multiplied by 'A', we get AA1=AA.AA^{-1} = \frac{A}{|A|}. .(Adj A)  I=A.Adj(A)A\Rightarrow \ I = \frac{A.Adj (A)}{|A|}  A(adjA)=AI\Rightarrow \ A (adj A) = | A | I ...(ii) \therefore From equation (i) and (ii), we have | A | = 10