Solveeit Logo

Question

Question: For anionic hydrolysis, pH is given by? A.\(pH\quad =\quad 1/2pK_{ w }=1/2pK_{ b }-1/2logC\) B.\...

For anionic hydrolysis, pH is given by?
A.pH=1/2pKw=1/2pKb1/2logCpH\quad =\quad 1/2pK_{ w }=1/2pK_{ b }-1/2logC
B.pH=1/2pKx+1/2pKa1/2logCpH\quad =\quad 1/2pK_{ x }+1/2pK_{ a }-1/2logC
C.pH=1/2pKw+1/2pKa+1/2logCpH\quad =\quad 1/2pK_{ w }+1/2pK_{ a }+1/2logC
D.None of the above

Explanation

Solution

You will get an idea from the definition of salt hydrolysis. It is defined as a reaction in which cation or anion or both of a salt react with water to produce acidity or alkalinity. Now try to find an answer accordingly for anionic hydrolysis.

Complete step by step answer:
Anionic hydrolysis - Salts of weak acids and strong bases undergo anionic hydrolysis and yield a basic solution. In anionic hydrolysis, the solution becomes slightly basic (pH >7)
Now, we will derive a general equation of pH of anionic hydrolysis.
A general hydrolysis reaction for a salt of a weak acid (HA) and strong base can be written as,
A+H2OHA+OHA^{ - }\quad \quad \quad \quad \quad +\quad \quad \quad \quad H_{ 2 }O\quad \quad \quad \quad \quad \rightleftharpoons \quad \quad \quad \quad HA\quad \quad \quad \quad \quad +\quad \quad \quad \quad OH^{ - }
C(1-x) Cx Cx
Thus, OHOH^{ - } ion concentration increases, the solution be­comes alkaline.
Applying law of mass action,
Kh{ K }_{ h } = [HA][OHOH^{ - }]/[AA^{ - }] = (Cx×Cx)/C(1-x) = (Cx2{ Cx }^{ 2 })/(1-x) …………(i)

Other equations present in the solution are,
HAA+H+HA\quad \rightleftharpoons \quad A^{ - }\quad +\quad H^{ + },
Ka{ K }_{ a } = [AA^{ - }][H+H^{ + }]/[HA] ...... (ii)
H2OH++OHH_{ 2 }O\quad \rightleftharpoons \quad H^{ + }\quad +\quad OH^{ - },
Kw{ K }_{ w } = [H+H^{ + }][OHOH^{ - }] ....... (iii)
From eqs. (ii) and (iii) we can conclude that,
log[OH]=logKwlogKa+log[salt]/[acid]log[OH^{ - }]\quad =\quad logK_{ w }-logK_{ a }+log[salt]/[acid]
pOH=pKw+pKa+log[salt]/[acid]-pOH\quad =\quad -pK_{ w }+pK_{ a }+log[salt]/[acid]
pKwpOH=pKa+log[salt]/[acid]pK_{ w }-pOH\quad =\quad pK_{ a }+log[salt]/[acid]
Considering eq. (i) again we can write,
Kx=Cx2/(1x)K_{ x }=Cx^{ 2 }/(1-x) or Kh=Ch2/(1h)K_{ h }=Ch^{ 2 }/(1-h)
When h is very small, (1-h) \rightarrow 1
or h2=Kh/Ch^{ 2 }=K_{ h }/C
or h=Kh/Ch=\sqrt { K_{ h }/C }
[OHOH^{ - }] = h × C = h=KhCh=\sqrt { K_{ h }C } = h=C×Kw/Kah=\sqrt { C\times { K }_{ w }/{ K }_{ a } }
[H+]=Kw/[OH]=Kw/(CKw/Ka)=(KaKw)/Kc[H^{ + }]\quad =\quad K_{ w }/[OH^{ - }]\quad =\quad K_{ w }/\sqrt { (CK_{ w }/K_{ a }) } =\sqrt { (K_{ a }K_{ w })/K_{ c } }
log[H+]=1/2logKw1/2logKa+1/2logC-log[H^{ + }]=-1/2logK_{ w }-1/2logK_{ a }+1/2logC
pH=1/2pKw+1/2pKa+1/2logCpH\quad =\quad 1/2pK_{ w }+1/2pK_{ a }+1/2logC
This is the equation for pH in anionic hydrolysis.

Therefore, the correct answer to this question is C.

Note: In chemistry, pH is a scale used to specify how acidic or basic a water-based solution is. Acidic solutions have a lower pH, while basic solutions have a higher pH.
pH for cationic hydrolysis is given by,
pH=1/2pKw1/2pKb1/2logCpH\quad =\quad 1/2pK_{ w }-1/2pK_{ b }-1/2logC