Solveeit Logo

Question

Question: For an orbital in $B^{+4}$ radial function is : $R(r) = \frac{1}{\sqrt[3]{Z}}(\frac{Z}{a_0})^{\frac{...

For an orbital in B+4B^{+4} radial function is : R(r)=1Z3(Za0)5269(4σ)σeσ/2R(r) = \frac{1}{\sqrt[3]{Z}}(\frac{Z}{a_0})^{\frac{5}{2}}\frac{\sqrt{6}}{9}(4-\sigma)\sigma e^{-\sigma/2}

where σ=2Zrna0\sigma=\frac{2Zr}{na_0} and a0=0.529A˚;Z=atomic number,r=radial distance from nucleus.a_0=0.529 \mathring{A}; Z = \text{atomic number}, r = \text{radial distance from nucleus.}

The radial node of orbital is at distance ......... A˚\mathring{A} from nucleus.

Answer

0.6348

Explanation

Solution

The given radial function is proportional to σ(4σ)eσ/2\sigma(4-\sigma)e^{-\sigma/2}. Comparing with the general form σlLnl12l+1(σ)eσ/2\sigma^l L_{n-l-1}^{2l+1}(\sigma)e^{-\sigma/2}, we deduce l=1l=1 and Ln23(σ)(4σ)L_{n-2}^3(\sigma) \propto (4-\sigma), which implies n2=1n-2=1, so n=3n=3. The orbital is 3p3p. The number of radial nodes is nl1=1n-l-1 = 1. Nodes occur where the radial function is zero for r>0r>0. The roots of σ(4σ)\sigma(4-\sigma) are σ=0\sigma=0 and σ=4\sigma=4. Thus, the radial node is at σ=4\sigma=4. For B+4B^{+4}, Z=5Z=5 and n=3n=3. Substituting σ=4\sigma=4 into σ=2Zrna0\sigma=\frac{2Zr}{na_0} gives 4=2×5×r3a04=\frac{2 \times 5 \times r}{3a_0}, yielding r=1.2a0r=1.2a_0. With a0=0.529A˚a_0=0.529 \mathring{A}, r=0.6348A˚r=0.6348 \mathring{A}.