Solveeit Logo

Question

Physics Question on Ray optics and optical instruments

For an isosceles prism of angle $

A

For the angle of incidence $

B

For this prism, the refractive index μ\mu and the angle of prism

C

At minimum deviation, the incident angle $

D

For this prism, the emergent ray at the second surface will be tangential to the surface when the angle of incidence at the first surface is i1=sin1[sinA4cos2A21cosA]i_{1}=\sin^{-1}\left[\sin\,A\sqrt{\frac{4\,\cos^{2}}{A}2 -1-\cos\,A}\right]

Answer

For this prism, the emergent ray at the second surface will be tangential to the surface when the angle of incidence at the first surface is i1=sin1[sinA4cos2A21cosA]i_{1}=\sin^{-1}\left[\sin\,A\sqrt{\frac{4\,\cos^{2}}{A}2 -1-\cos\,A}\right]

Explanation

Solution

(A) At minimum deviation
i=ei = e
δmin=2iA\delta_{\min }=2 i - A
i=δmin+A2=Ai =\frac{\delta_{ \min }+ A }{2}= A ...(I)
r1=r2=A2r _{1}= r _{2}=\frac{ A }{2} ...(II)
r1=i2r _{1}=\frac{ i }{2}
(B) μ=sin(δm+A2)sin(A2)=sinAsinA2=2cosA2\mu=\frac{\sin \left(\frac{\delta_{ m }+ A }{2}\right)}{\sin \left(\frac{ A }{2}\right)}=\frac{\sin A }{\sin \frac{ A }{2}}=2 \cos \frac{ A }{2}
A=2cos1(μ2)A =2 \cos ^{-1}\left(\frac{\mu}{2}\right)
(C) If i1=Ai _{1}= A, deviation is minimum, ray is parallel to the base.
(D) When e=90e =90^{\circ}
r2=θcr _{2}=\theta_{c}
r1=Ar2=Aθcr _{1}= A - r _{2}= A -\theta_{ c }
sini=μsinr1\sin i =\mu \sin r _{1}
sini=μsin(Aθc)\sin i =\mu \sin \left( A -\theta_{c}\right)
sini=μ(sinAcosθccosAsinθc)\sin i =\mu\left(\sin A \cos \theta_{c}-\cos A \sin \theta_{c}\right)
sini=μ[sinA1sin2θccosAsinθc]\sin i =\mu\left[\sin A \sqrt{1-\sin ^{2} \theta_{ c }}-\cos A \cdot \sin \theta_{c}\right]
sini=μ[sinA11μ2cosA1μ]\sin i =\mu\left[\sin A \sqrt{1-\frac{1}{\mu^{2}}}-\cos A \cdot \frac{1}{\mu}\right]
sini=μ×1μ[sinAμ21cosA]\sin i =\mu \times \frac{1}{\mu}\left[\sin A \sqrt{\mu^{2}-1}-\cos A \right]
sini=[sinA4cos2A21cosA]\sin i =\left[\sin A \sqrt{4 \cos ^{2} \frac{ A }{2}-1}-\cos A \right]
i=sin1[sinA4cos2A21cosA]i =\sin ^{-1}\left[\sin A \sqrt{4 \cos ^{2} \frac{ A }{2}-1}-\cos A \right]