Solveeit Logo

Question

Question: For an integer n, the integral \(\int_{0}^{\pi}e^{\cos^{2}x}\) cos<sup>3</sup> (2n +1) x dx has the ...

For an integer n, the integral 0πecos2x\int_{0}^{\pi}e^{\cos^{2}x} cos3 (2n +1) x dx has the value

A

π

B

1

C

0

D

None of these

Answer

0

Explanation

Solution

I = 0πecos2x\int_{0}^{\pi}e^{\cos^{2}x}cos3 (2n +1) x dx

=0πecos2(πx)\int_{0}^{\pi}e^{\cos^{2}(\pi - x)}cos3 (2 n + 1) (π – x) dx

= 0πecos2x\int_{0}^{\pi}e^{\cos^{2}x}cos3 (2 n π + π – (2 n + 1) x) dx

= –0πecos2x\int_{0}^{\pi}e^{\cos^{2}x}cos3 (2n + 1) x dx = –I.

Hence 2 I = 0 ⇒ I = 0.