Solveeit Logo

Question

Question: For an ideal gas \[\dfrac{{{{\text{C}}_{\text{p}}},{\text{m}}}}{{{{\text{C}}_{\text{v}}},{\text{m}}}...

For an ideal gas Cp,mCv,m=γ\dfrac{{{{\text{C}}_{\text{p}}},{\text{m}}}}{{{{\text{C}}_{\text{v}}},{\text{m}}}} = \gamma . The molecular mass of the gas is M, its specific heat capacity at constant volume is:
A.RM(γ1)\dfrac{{\text{R}}}{{{\text{M}}\left( {\gamma - 1} \right)}}
B.MR(γ1)\dfrac{{\text{M}}}{{{\text{R}}\left( {\gamma - 1} \right)}}
C.γRMγ1\dfrac{{\gamma {\text{RM}}}}{{\gamma - 1}}
D.γRM(γ1)\dfrac{{\gamma {\text{R}}}}{{{\text{M}}\left( {\gamma - 1} \right)}}

Explanation

Solution

Mayer’s formula tells the relation of heat capacities at constant pressure and volume with universal gas constant. Poisson ratio is given by CpCv=γ\dfrac{{{{\text{C}}_{\text{p}}}}}{{{{\text{C}}_{\text{v}}}}} = \gamma .

Complete step by step answer:
Molar heat capacity and specific heat capacity can be related as: Cm=c×M{{\text{C}}_{\text{m}}} = {\text{c}} \times {\text{M}} . According to Mayer’s formula; universal gas constant and heat capacities at constant pressure and volume can be related as: CpCv=R{{\text{C}}_{\text{p}}} - {{\text{C}}_{\text{v}}} = {\text{R}} where Cp and Cv{{\text{C}}_{\text{p}}}{\text{ and }}{{\text{C}}_{\text{v}}} are molar heat capacity at constant pressure and constant volume respectively. Similarly, relation between universal gas constant and specific heat capacities at constant pressure and constant volume can be given as: cpcv=RM{{\text{c}}_{\text{p}}} - {{\text{c}}_{\text{v}}} = \dfrac{{\text{R}}}{{\text{M}}} where cp and cv{{\text{c}}_{\text{p}}}{\text{ and }}{{\text{c}}_{\text{v}}} are specific heat capacity at constant pressure and constant volume respectively and M is molecular weight.
According to Poisson’s ratio CpCv=γ\dfrac{{{{\text{C}}_{\text{p}}}}}{{{{\text{C}}_{\text{v}}}}} = \gamma
where Cp and Cv{{\text{C}}_{\text{p}}}{\text{ and }}{{\text{C}}_{\text{v}}} molar heat capacity at constant pressure and constant volume respectively are.
Similarly, cpcv=γ\dfrac{{{{\text{c}}_{\text{p}}}}}{{{{\text{c}}_{\text{v}}}}} = \gamma
where cp and cv{{\text{c}}_{\text{p}}}{\text{ and }}{{\text{c}}_{\text{v}}} are specific heat capacity at constant pressure and constant volume respectively.
Now, in order to find specific heat capacity at constant volume:
As we known, CpCv=R{{\text{C}}_{\text{p}}} - {{\text{C}}_{\text{v}}} = {\text{R}} .
Dividing both the sides by Cv{{\text{C}}_{\text{v}}} ,
we get CpCvCvCv=RCv\dfrac{{{{\text{C}}_{\text{p}}}}}{{{{\text{C}}_{\text{v}}}}} - \dfrac{{{{\text{C}}_{\text{v}}}}}{{{{\text{C}}_{\text{v}}}}} = \dfrac{{\text{R}}}{{{{\text{C}}_{\text{v}}}}} and as we know CpCv=γ\dfrac{{{{\text{C}}_{\text{p}}}}}{{{{\text{C}}_{\text{v}}}}} = \gamma ,
Therefore on solving we get γ1=RCv\gamma - 1 = \dfrac{{\text{R}}}{{{{\text{C}}_{\text{v}}}}} and as Cm=c×M{{\text{C}}_{\text{m}}} = {\text{c}} \times {\text{M}} , if we convert molar heat capacity to specific heat capacity, we get γ1=Rcv×M\gamma - 1 = \dfrac{{\text{R}}}{{{{\text{c}}_{\text{v}}} \times {\text{M}}}}
On rearranging we get: cv=RM(γ1){{\text{c}}_{\text{v}}} = \dfrac{{\text{R}}}{{{\text{M}}\left( {\gamma - 1} \right)}} .

Therefore, the correct option is A.

Note:
Heat capacity is the amount of heat required to raise the temperature by 1oC or 1oK{1^o}{\text{C or }}{1^o}{\text{K}} of a substance. It is represented by C. it can be given as: C=dQdT{\text{C}} = \dfrac{{{\text{dQ}}}}{{{\text{dT}}}} . The unit of heat capacity is K1{\text{J }}{{\text{K}}^{ - 1}} .
Molar heat capacity is the amount of heat required to raise the temperature by 1oC or 1oK{1^o}{\text{C or }}{1^o}{\text{K}} of 1 mole of a substance. It is represented by Cm{{\text{C}}_{\text{m}}} and it can be given as: Cm=Cμ{{\text{C}}_{\text{m}}} = \dfrac{{\text{C}}}{\mu } . The unit of molar heat capacity is J mol1K1{\text{J mo}}{{\text{l}}^{ - 1}}{{\text{K}}^{ - 1}} .
Specific heat capacity is defined as the amount of heat required to raise the temperature of 1g mass of the substance through 1oC or 1oK{1^o}{\text{C or }}{1^o}{\text{K}} . The SI unit of specific heat is J kg1K1{\text{J k}}{{\text{g}}^{ - 1}}{{\text{K}}^{ - 1}} . It is given as c=1mΔQΔT{\text{c}} = \dfrac{1}{{\text{m}}}\dfrac{{\Delta {\text{Q}}}}{{\Delta {\text{T}}}} .