Solveeit Logo

Question

Mathematics Question on Trigonometry

For an acute angle θ\theta , sin θ\theta + cos θ\theta takes the greater value when e is

A

3030^\circ

B

4545^\circ

C

6060^\circ

D

9090^\circ

Answer

4545^\circ

Explanation

Solution

The correct option is (B): 4545^\circ
Explanation: For an acute angle θ\theta, the expression sin(θ)+cos(θ)\sin(\theta) + \cos(\theta) takes the greatest value when θ=45\theta = 45^\circ.
Here's why:
- At θ=45\theta = 45^\circ, both sin(45)=22\sin(45^\circ) = \frac{\sqrt{2}}{2} and cos(45)=22\cos(45^\circ) = \frac{\sqrt{2}}{2}.
- The sum is sin(45)+cos(45)=22+22=21.414\sin(45^\circ) + \cos(45^\circ) = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} = \sqrt{2} \approx 1.414, which is the maximum value for this expression.
Thus, the correct answer is Option B: 4545^\circ.