Question
Question: For \[\alpha =\dfrac{\pi }{7}\] which of the following hold(s) good? (This question has multiple c...
For α=7π which of the following hold(s) good?
(This question has multiple correct options)
(a) tanαtan2αtan3α=tan3α−tan2α−tanα
(b) cosecα=cosec2α+cosec4α
(c) cosα−cos2α+cos3α=21
(d) 8cosαcos2αcos4α=1
Solution
To solve the given question, we will check each option one by one. For checking option (a), we will take α+2α=3α. We will take tan on both sides. Then we will simplify it and match with the option. For checking the option (b), we will write the terms on LHS in the form of the sine function. Then we will simplify this by using the necessary trigonometric identities and putting the value of α=7π. For checking option (c), we will write cosα+cos3α in terms of the product. Then we will multiply sinα on the numerator and denominator and simplify it. Finally, we will put the value of α=7π and check its correctness. For checking option (d), we will do the same steps as in the option (c).
Complete step-by-step answer :
It is given in the question that α=7π and we have to check which of the option will be correct when we will put α=7π on them. So, we will check each option one by one.
Option(a): tanαtan2αtan3α=tan3α−tan2α−tanα
For checking this option, we have, α+2α=3α.
Now, we will take tan on both the sides, so, we will get,
⇒tan(a+2α)=tan3α.....(i)
Now, we will apply the identity given below
tan(A+B)=1−tanAtanBtanA+tanB
On applying this identity in LHS of (i), we will get,
⇒1−tanαtan2αtanα+tan2α=tan3α
On cross multiplying, we will get,
⇒tanα+tan2α=tan3α(1−tanαtan2α)
⇒tanα+tan2α=tan3α−tanαtan2αtan3α
⇒tanαtan2αtan3α=tan3α−tanα−tan2α
Option(b): cosecα=cosec2α+cosec4α
For checking this option, we will consider the right-hand side of the above equation. Thus, we have,
RHS=cosec2α+cosec4α
Now, we will convert cosecθ to sine form by the formula cosecθ=sinθ1.
⇒RHS=sin2α1+sin4α1
⇒RHS=sin2αsin4αsin4α+sin2α
Now, we will apply the following trigonometric identities. In the numerator, we will apply,
sinA+sinB=2sin(2A+B)cos(2A−B)
In the denominator, we will apply,
sin2θ=2sinθcosθ
Thus, we will get,
⇒RHS=2sinαcosαsin4α2sin(24α+2α)cos(24α−2α)
⇒RHS=2sinαcosαsin4α2sin3αcosα
⇒RHS=sinαsin4αsin3α
Now, we will put the value α=7π in the above equations.
⇒RHS=sin(7π)sin(74π)sin(73π)
⇒RHS=sin(7π)sin(74π)sin(π−74π)
Now, we can write sin(π−θ)=sinθ. So, we will get,
⇒RHS=sin(7π)sin(74π)sin(74π)
⇒RHS=sin(7π)1
⇒RHS=cosec(7π)
⇒RHS=cosecα
Hence LHS = RHS.
Option(c): cosα−cos2α+cos3α=21
For checking this option, we will consider the LHS of the above equation. Thus, we will get,
LHS=cosα−cos2α+cos3α
⇒LHS=(cosα+cos3α)−cos2α
Now, we will apply the identity,
cosC+cosD=2cos(2C+D)cos(2C−D)
Thus, we will get,
⇒LHS=2cos(2α+3α)cos(23α−α)−cos2α
⇒LHS=2cos2αcosα−cos2α
⇒LHS=cos2α(2cosα−1)
Now, we will multiply both the numerator and denominator by sinα. Thus, we will get,
⇒LHS=sinαcos2α(2cosα−1)sinα
⇒LHS=sinαcos2α(2cosαsinα−sinα)
Now, we know that sin2θ=2sinθcosθ. Thus, we will get,
⇒LHS=2sin2αcos2αcos2α(sin2α−sinα)
Now, we will use the identity
sinA−sinB=2cos(2A+B)sin(2A−B)
Thus, we will get,
⇒LHS=2sin2αcos2αcos2α[2cos(22α+α)sin(22α−α)]
⇒LHS=2sin2αcos2αcos2α[2cos23αsin2α]
⇒LHS=cos2αcos2αcos23α
Now, we will put α=7π in the above equation. Thus, we will get,
⇒LHS=cos14πcos72π×cos143π
Multiplying 2 on both the numerator and denominator, we get,
⇒LHS=2cos14π2cos72π×cos143π
⇒LHS=2cos14π2cos(2π−143π)cos143π
We know that,
cos(2π−θ)=sinθ
So, we will get,
⇒LHS=2cos14π2sin143πcos143π
We know that, sin2θ=2sinθcosθ. So, we get,
⇒LHS=2cos14πsin146π
⇒LHS=2cos(2π−146π)sin146π
On using the identity, cos(2π−θ)=sinθ, we will get,
⇒LHS=2sin146πsin146π
⇒LHS=21
Hence, LHS = RHS.
Option(d): 8cosαcos2αcos4α=1
For checking this option, we will consider the LHS of the above equation. Thus, we will get,
LHS=8cosαcos2αcos4α
Now, we will multiply the numerator and denominator by sinα, so we will get,
⇒LHS=sinα8cosαcos2αcos4αsinα
⇒LHS=sinα4(2sinαcosα)cos2αcos4α
On using sin 2A = 2 sin A cos A, we get,
⇒LHS=sinα4sin2αcos2αcos4α
⇒LHS=sinα2(2sin2αcos2α)cos4α
⇒LHS=sinα2sin4αcos4α
⇒LHS=sinαsin8α
Now, we will put α=7π in the above equation. Thus, we will get,
⇒LHS=sin7πsin(78π)
⇒LHS=sin7πsin(π+7π)
We know that, sin(π+θ)=−sinθ, so we get,
⇒LHS=sin7π−sin(7π)
⇒LHS=−1
⇒LHS=RHS
Hence, options (a), (b) and (c) are the right options.
Note :The option (a) can also be checked in the following way.
α+2α+4α=7a
We know that, α=7π, so,
⇒α+2α+4α=7(7π)
⇒α+2α+4α=π
Now, we know that if A+B+C=π then we have the following relation.
tanA+tanB+tanC=tanAtanBtanC
Thus, we have,
tanα+tan2α+tan4α=tanαtan2αtan4α
Now, we know that,
tan4α=tan74π=tan(π−73π)
tan(π−θ)=−tanθ
Therefore,
tan4α=−tan73π=−tan3α
Thus, we will get,
tanα+tan2α−tan3α=−tanαtan2αtan3α
⇒tan3α−tanα−tan2α=tanαtan2αtan3α
The option (c) can also be checked in the following way
LHS=8cosαcos2αcos4α
⇒LHS=8cos(20α)cos(21α)cos(22α)
Now, we know that if A is an acute angle, then we have the following relation
cosA×cos2A×cos22A.....cos2n−1A=2nsinAsin2nA
In our case, n = 3, so we will get,
⇒LHS=23sinα8×sin(23α)
⇒LHS=8sinα8sin8α
⇒LHS=sinαsin8α
Now, α=7π, so we get,
⇒LHS=sin7πsin78π
⇒LHS=sin7πsin(π+7π)
⇒LHS=sin7π−sin7π=−1