Solveeit Logo

Question

Question: For \[\alpha =\dfrac{\pi }{7}\] which of the following hold(s) good? (This question has multiple c...

For α=π7\alpha =\dfrac{\pi }{7} which of the following hold(s) good?
(This question has multiple correct options)
(a) tanαtan2αtan3α=tan3αtan2αtanα\left( \text{a} \right)\text{ }\tan \alpha \tan 2\alpha \tan 3\alpha =\tan 3\alpha -\tan 2\alpha -\tan \alpha
(b) cosecα=cosec2α+cosec4α\left( \text{b} \right)\text{ cosec}\alpha =\text{cosec}2\alpha +\text{cosec}4\alpha
(c) cosαcos2α+cos3α=12\left( \text{c} \right)\text{ cos}\alpha -\cos 2\alpha +\cos 3\alpha =\dfrac{1}{2}
(d) 8cosαcos2αcos4α=1\left( \text{d} \right)\text{ 8cos}\alpha \cos 2\alpha \cos 4\alpha =1

Explanation

Solution

To solve the given question, we will check each option one by one. For checking option (a), we will take α+2α=3α.\alpha +2\alpha =3\alpha . We will take tan on both sides. Then we will simplify it and match with the option. For checking the option (b), we will write the terms on LHS in the form of the sine function. Then we will simplify this by using the necessary trigonometric identities and putting the value of α=π7.\alpha =\dfrac{\pi }{7}. For checking option (c), we will write cosα+cos3α\cos \alpha +\cos 3\alpha in terms of the product. Then we will multiply sinα\sin \alpha on the numerator and denominator and simplify it. Finally, we will put the value of α=π7\alpha =\dfrac{\pi }{7} and check its correctness. For checking option (d), we will do the same steps as in the option (c).

Complete step-by-step answer :
It is given in the question that α=π7\alpha =\dfrac{\pi }{7} and we have to check which of the option will be correct when we will put α=π7\alpha =\dfrac{\pi }{7} on them. So, we will check each option one by one.
Option(a)tanαtan2αtan3α=tan3αtan2αtanα\text{Option}\left( \text{a} \right)\text{: }\tan \alpha \tan 2\alpha \tan 3\alpha =\tan 3\alpha -\tan 2\alpha -\tan \alpha
For checking this option, we have, α+2α=3α.\alpha +2\alpha =3\alpha .
Now, we will take tan on both the sides, so, we will get,
tan(a+2α)=tan3α.....(i)\Rightarrow \tan \left( a+2\alpha \right)=\tan 3\alpha .....\left( i \right)
Now, we will apply the identity given below
tan(A+B)=tanA+tanB1tanAtanB\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}
On applying this identity in LHS of (i), we will get,
tanα+tan2α1tanαtan2α=tan3α\Rightarrow \dfrac{\tan \alpha +\tan 2\alpha }{1-\tan \alpha \tan 2\alpha }=\tan 3\alpha
On cross multiplying, we will get,
tanα+tan2α=tan3α(1tanαtan2α)\Rightarrow \tan \alpha +\tan 2\alpha =\tan 3\alpha \left( 1-\tan \alpha \tan 2\alpha \right)
tanα+tan2α=tan3αtanαtan2αtan3α\Rightarrow \tan \alpha +\tan 2\alpha =\tan 3\alpha -\tan \alpha \tan 2\alpha \tan 3\alpha
tanαtan2αtan3α=tan3αtanαtan2α\Rightarrow \tan \alpha \tan 2\alpha \tan 3\alpha =\tan 3\alpha -\tan \alpha -\tan 2\alpha
Option(b): cosecα=cosec2α+cosec4α\text{Option}\left( \text{b} \right)\text{: cosec}\alpha =\text{cosec}2\alpha +\text{cosec}4\alpha
For checking this option, we will consider the right-hand side of the above equation. Thus, we have,
RHS=cosec2α+cosec4αRHS=\text{cosec}2\alpha +\text{cosec}4\alpha
Now, we will convert cosecθ\operatorname{cosec}\theta to sine form by the formula cosecθ=1sinθ.\operatorname{cosec}\theta =\dfrac{1}{\sin \theta }.
RHS=1sin2α+1sin4α\Rightarrow RHS=\dfrac{1}{\sin 2\alpha }+\dfrac{1}{\sin 4\alpha }
RHS=sin4α+sin2αsin2αsin4α\Rightarrow RHS=\dfrac{\sin 4\alpha +\sin 2\alpha }{\sin 2\alpha \sin 4\alpha }
Now, we will apply the following trigonometric identities. In the numerator, we will apply,
sinA+sinB=2sin(A+B2)cos(AB2)\sin A+\sin B=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)
In the denominator, we will apply,
sin2θ=2sinθcosθ\sin 2\theta =2\sin \theta \cos \theta
Thus, we will get,
RHS=2sin(4α+2α2)cos(4α2α2)2sinαcosαsin4α\Rightarrow RHS=\dfrac{2\sin \left( \dfrac{4\alpha +2\alpha }{2} \right)\cos \left( \dfrac{4\alpha -2\alpha }{2} \right)}{2\sin \alpha \cos \alpha \sin 4\alpha }
RHS=2sin3αcosα2sinαcosαsin4α\Rightarrow RHS=\dfrac{2\sin 3\alpha \cos \alpha }{2\sin \alpha \cos \alpha \sin 4\alpha }
RHS=sin3αsinαsin4α\Rightarrow RHS=\dfrac{\sin 3\alpha }{\sin \alpha \sin 4\alpha }
Now, we will put the value α=π7\alpha =\dfrac{\pi }{7} in the above equations.
RHS=sin(3π7)sin(π7)sin(4π7)\Rightarrow RHS=\dfrac{\sin \left( \dfrac{3\pi }{7} \right)}{\sin \left( \dfrac{\pi }{7} \right)\sin \left( \dfrac{4\pi }{7} \right)}
RHS=sin(π4π7)sin(π7)sin(4π7)\Rightarrow RHS=\dfrac{\sin \left( \pi -\dfrac{4\pi }{7} \right)}{\sin \left( \dfrac{\pi }{7} \right)\sin \left( \dfrac{4\pi }{7} \right)}
Now, we can write sin(πθ)=sinθ.\sin \left( \pi -\theta \right)=\sin \theta . So, we will get,
RHS=sin(4π7)sin(π7)sin(4π7)\Rightarrow RHS=\dfrac{\sin \left( \dfrac{4\pi }{7} \right)}{\sin \left( \dfrac{\pi }{7} \right)\sin \left( \dfrac{4\pi }{7} \right)}
RHS=1sin(π7)\Rightarrow RHS=\dfrac{1}{\sin \left( \dfrac{\pi }{7} \right)}
RHS=cosec(π7)\Rightarrow RHS=\operatorname{cosec}\left( \dfrac{\pi }{7} \right)
RHS=cosecα\Rightarrow RHS=\operatorname{cosec}\alpha
Hence LHS = RHS.
Option(c): cosαcos2α+cos3α=12\text{Option}\left( \text{c} \right)\text{: cos}\alpha -\cos 2\alpha +\cos 3\alpha =\dfrac{1}{2}
For checking this option, we will consider the LHS of the above equation. Thus, we will get,
LHS=cosαcos2α+cos3αLHS=\text{cos}\alpha -\cos 2\alpha +\cos 3\alpha
LHS=(cosα+cos3α)cos2α\Rightarrow LHS=\left( \text{cos}\alpha +\cos 3\alpha \right)-\cos 2\alpha
Now, we will apply the identity,
cosC+cosD=2cos(C+D2)cos(CD2)\cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)
Thus, we will get,
LHS=2cos(α+3α2)cos(3αα2)cos2α\Rightarrow LHS=2\cos \left( \dfrac{\alpha +3\alpha }{2} \right)\cos \left( \dfrac{3\alpha -\alpha }{2} \right)-\cos 2\alpha
LHS=2cos2αcosαcos2α\Rightarrow LHS=2\cos 2\alpha \cos \alpha -\cos 2\alpha
LHS=cos2α(2cosα1)\Rightarrow LHS=\cos 2\alpha \left( 2\cos \alpha -1 \right)
Now, we will multiply both the numerator and denominator by sinα.\sin \alpha . Thus, we will get,
LHS=cos2α(2cosα1)sinαsinα\Rightarrow LHS=\dfrac{\cos 2\alpha \left( 2\cos \alpha -1 \right)\sin \alpha }{\sin \alpha }
LHS=cos2α(2cosαsinαsinα)sinα\Rightarrow LHS=\dfrac{\cos 2\alpha \left( 2\cos \alpha \sin \alpha -\sin \alpha \right)}{\sin \alpha }
Now, we know that sin2θ=2sinθcosθ.\sin 2\theta =2\sin \theta \cos \theta . Thus, we will get,
LHS=cos2α(sin2αsinα)2sinα2cosα2\Rightarrow LHS=\dfrac{\cos 2\alpha \left( \sin 2\alpha -\sin \alpha \right)}{2\sin \dfrac{\alpha }{2}\cos \dfrac{\alpha }{2}}
Now, we will use the identity
sinAsinB=2cos(A+B2)sin(AB2)\sin A-\sin B=2\cos \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)
Thus, we will get,
LHS=cos2α[2cos(2α+α2)sin(2αα2)]2sinα2cosα2\Rightarrow LHS=\dfrac{\cos 2\alpha \left[ 2\cos \left( \dfrac{2\alpha +\alpha }{2} \right)\sin \left( \dfrac{2\alpha -\alpha }{2} \right) \right]}{2\sin \dfrac{\alpha }{2}\cos \dfrac{\alpha }{2}}
LHS=cos2α[2cos3α2sinα2]2sinα2cosα2\Rightarrow LHS=\dfrac{\cos 2\alpha \left[ 2\cos \dfrac{3\alpha }{2}\sin \dfrac{\alpha }{2} \right]}{2\sin \dfrac{\alpha }{2}\cos \dfrac{\alpha }{2}}
LHS=cos2αcos3α2cosα2\Rightarrow LHS=\dfrac{\cos 2\alpha \cos \dfrac{3\alpha }{2}}{\cos \dfrac{\alpha }{2}}
Now, we will put α=π7\alpha =\dfrac{\pi }{7} in the above equation. Thus, we will get,
LHS=cos2π7×cos3π14cosπ14\Rightarrow LHS=\dfrac{\cos \dfrac{2\pi }{7}\times \cos \dfrac{3\pi }{14}}{\cos \dfrac{\pi }{14}}
Multiplying 2 on both the numerator and denominator, we get,
LHS=2cos2π7×cos3π142cosπ14\Rightarrow LHS=\dfrac{2\cos \dfrac{2\pi }{7}\times \cos \dfrac{3\pi }{14}}{2\cos \dfrac{\pi }{14}}
LHS=2cos(π23π14)cos3π142cosπ14\Rightarrow LHS=\dfrac{2\cos \left( \dfrac{\pi }{2}-\dfrac{3\pi }{14} \right)\cos \dfrac{3\pi }{14}}{2\cos \dfrac{\pi }{14}}
We know that,
cos(π2θ)=sinθ\cos \left( \dfrac{\pi }{2}-\theta \right)=\sin \theta
So, we will get,
LHS=2sin3π14cos3π142cosπ14\Rightarrow LHS=\dfrac{2\sin \dfrac{3\pi }{14}\cos \dfrac{3\pi }{14}}{2\cos \dfrac{\pi }{14}}
We know that, sin2θ=2sinθcosθ.\sin 2\theta =2\sin \theta \cos \theta . So, we get,
LHS=sin6π142cosπ14\Rightarrow LHS=\dfrac{\sin \dfrac{6\pi }{14}}{2\cos \dfrac{\pi }{14}}
LHS=sin6π142cos(π26π14)\Rightarrow LHS=\dfrac{\sin \dfrac{6\pi }{14}}{2\cos \left( \dfrac{\pi }{2}-\dfrac{6\pi }{14} \right)}
On using the identity, cos(π2θ)=sinθ,\cos \left( \dfrac{\pi }{2}-\theta \right)=\sin \theta , we will get,
LHS=sin6π142sin6π14\Rightarrow LHS=\dfrac{\sin \dfrac{6\pi }{14}}{2\sin \dfrac{6\pi }{14}}
LHS=12\Rightarrow LHS=\dfrac{1}{2}
Hence, LHS = RHS.
Option(d): 8cosαcos2αcos4α=1\text{Option}\left( \text{d} \right)\text{: 8cos}\alpha \cos 2\alpha \cos 4\alpha =1
For checking this option, we will consider the LHS of the above equation. Thus, we will get,
LHS=8cosαcos2αcos4αLHS=\text{8cos}\alpha \cos 2\alpha \cos 4\alpha
Now, we will multiply the numerator and denominator by sinα,\sin \alpha , so we will get,
LHS=8cosαcos2αcos4αsinαsinα\Rightarrow LHS=\dfrac{\text{8cos}\alpha \cos 2\alpha \cos 4\alpha \sin \alpha }{\sin \alpha }
LHS=4(2sinαcosα)cos2αcos4αsinα\Rightarrow LHS=\dfrac{\text{4}\left( \text{2sin}\alpha \text{cos}\alpha \right)\cos 2\alpha \cos 4\alpha }{\sin \alpha }
On using sin 2A = 2 sin A cos A, we get,
LHS=4sin2αcos2αcos4αsinα\Rightarrow LHS=\dfrac{\text{4sin2}\alpha \cos 2\alpha \cos 4\alpha }{\sin \alpha }
LHS=2(2sin2αcos2α)cos4αsinα\Rightarrow LHS=\dfrac{2\left( 2\sin 2\alpha \cos 2\alpha \right)\cos 4\alpha }{\sin \alpha }
LHS=2sin4αcos4αsinα\Rightarrow LHS=\dfrac{2\sin 4\alpha \cos 4\alpha }{\sin \alpha }
LHS=sin8αsinα\Rightarrow LHS=\dfrac{\sin 8\alpha }{\sin \alpha }
Now, we will put α=π7\alpha =\dfrac{\pi }{7} in the above equation. Thus, we will get,
LHS=sin(8π7)sinπ7\Rightarrow LHS=\dfrac{\sin \left( \dfrac{8\pi }{7} \right)}{\sin \dfrac{\pi }{7}}
LHS=sin(π+π7)sinπ7\Rightarrow LHS=\dfrac{\sin \left( \pi +\dfrac{\pi }{7} \right)}{\sin \dfrac{\pi }{7}}
We know that, sin(π+θ)=sinθ,\sin \left( \pi +\theta \right)=-\sin \theta , so we get,
LHS=sin(π7)sinπ7\Rightarrow LHS=\dfrac{-\sin \left( \dfrac{\pi }{7} \right)}{\sin \dfrac{\pi }{7}}
LHS=1\Rightarrow LHS=-1
LHSRHS\Rightarrow LHS\ne RHS
Hence, options (a), (b) and (c) are the right options.

Note :The option (a) can also be checked in the following way.
α+2α+4α=7a\alpha +2\alpha +4\alpha =7a
We know that, α=π7,\alpha =\dfrac{\pi }{7}, so,
α+2α+4α=7(π7)\Rightarrow \alpha +2\alpha +4\alpha =7\left( \dfrac{\pi }{7} \right)
α+2α+4α=π\Rightarrow \alpha +2\alpha +4\alpha =\pi
Now, we know that if A+B+C=πA+B+C=\pi then we have the following relation.
tanA+tanB+tanC=tanAtanBtanC\tan A+\tan B+\tan C=\tan A\tan B\tan C
Thus, we have,
tanα+tan2α+tan4α=tanαtan2αtan4α\tan \alpha +\tan 2\alpha +\tan 4\alpha =\tan \alpha \tan 2\alpha \tan 4\alpha
Now, we know that,
tan4α=tan4π7=tan(π3π7)\tan 4\alpha =\tan \dfrac{4\pi }{7}=\tan \left( \pi -\dfrac{3\pi }{7} \right)
tan(πθ)=tanθ\tan \left( \pi -\theta \right)=-\tan \theta
Therefore,
tan4α=tan3π7=tan3α\tan 4\alpha =-\tan \dfrac{3\pi }{7}=-\tan 3\alpha
Thus, we will get,
tanα+tan2αtan3α=tanαtan2αtan3α\tan \alpha +\tan 2\alpha -\tan 3\alpha =-\tan \alpha \tan 2\alpha \tan 3\alpha
tan3αtanαtan2α=tanαtan2αtan3α\Rightarrow \tan 3\alpha -\tan \alpha -\tan 2\alpha =\tan \alpha \tan 2\alpha \tan 3\alpha
The option (c) can also be checked in the following way
LHS=8cosαcos2αcos4αLHS=8\cos \alpha \cos 2\alpha \cos 4\alpha
LHS=8cos(20α)cos(21α)cos(22α)\Rightarrow LHS=8\cos \left( {{2}^{0}}\alpha \right)\cos \left( {{2}^{1}}\alpha \right)\cos \left( {{2}^{2}}\alpha \right)
Now, we know that if A is an acute angle, then we have the following relation
cosA×cos2A×cos22A.....cos2n1A=sin2nA2nsinA\cos A\times \cos 2A\times \cos {{2}^{2}}A.....\cos {{2}^{n-1}}A=\dfrac{\sin {{2}^{n}}A}{{{2}^{n}}\sin A}
In our case, n = 3, so we will get,
LHS=8×sin(23α)23sinα\Rightarrow LHS=\dfrac{8\times \sin \left( {{2}^{3}}\alpha \right)}{{{2}^{3}}\sin \alpha }
LHS=8sin8α8sinα\Rightarrow LHS=\dfrac{8\sin 8\alpha }{8\sin \alpha }
LHS=sin8αsinα\Rightarrow LHS=\dfrac{\sin 8\alpha }{\sin \alpha }
Now, α=π7,\alpha =\dfrac{\pi }{7}, so we get,
LHS=sin8π7sinπ7\Rightarrow LHS=\dfrac{\sin \dfrac{8\pi }{7}}{\sin \dfrac{\pi }{7}}
LHS=sin(π+π7)sinπ7\Rightarrow LHS=\dfrac{\sin \left( \pi +\dfrac{\pi }{7} \right)}{\sin \dfrac{\pi }{7}}
LHS=sinπ7sinπ7=1\Rightarrow LHS=\dfrac{-\sin \dfrac{\pi }{7}}{\sin \dfrac{\pi }{7}}=-1