Solveeit Logo

Question

Mathematics Question on Matrices

For α,βR\alpha, \beta \in \mathbb{R} and a natural number nn, let Ar=r1n22+α 2r2n2β\3r23n(3n1)2.A_r = \begin{vmatrix} r & 1 & \frac{n^2}{2} + \alpha \\\ 2r & 2 & n^2 - \beta \\\3r - 2 & 3 & \frac{n(3n - 1)}{2} \end{vmatrix}.Then 2A10A82A_{10} - A_8 is:

A

4α+2β4\alpha + 2\beta

B

2α+4β2\alpha + 4\beta

C

2n2n

D

00

Answer

4α+2β4\alpha + 2\beta

Explanation

Solution

Step 1: Write the determinant for ArA_r:

Ar=r1n22+α 2r2n22β 3r23n3n12.A_r = \begin{vmatrix} r & 1 & \frac{n^2}{2} + \alpha \\\ 2r & 2 & \frac{n^2}{2} - \beta \\\ 3r - 2 & 3 & n\frac{3n-1}{2} \end{vmatrix}.

Step 2: Expand 2A102A_{10}: Substitute r=10r = 10:

2A10=2101n22+α 202n22β 283n3n12.2A_{10} = 2 \cdot \begin{vmatrix} 10 & 1 & \frac{n^2}{2} + \alpha \\\ 20 & 2 & \frac{n^2}{2} - \beta \\\ 28 & 3 & n\frac{3n-1}{2} \end{vmatrix}.

Step 3: Expand A5A_5: Substitute r=5r = 5:

A5=51n22+α 102n22β 133n3n12.A_5 = \begin{vmatrix} 5 & 1 & \frac{n^2}{2} + \alpha \\\ 10 & 2 & \frac{n^2}{2} - \beta \\\ 13 & 3 & n\frac{3n-1}{2} \end{vmatrix}.

Step 4: Compute 2A10A52A_{10} - A_5:

2A10A5=201n22+α 402n22β 563n3n1281n22+α 162n22β 223n3n12.2A_{10} - A_5 = \begin{vmatrix} 20 & 1 & \frac{n^2}{2} + \alpha \\\ 40 & 2 & \frac{n^2}{2} - \beta \\\ 56 & 3 & n\frac{3n-1}{2} \end{vmatrix} - \begin{vmatrix} 8 & 1 & \frac{n^2}{2} + \alpha \\\ 16 & 2 & \frac{n^2}{2} - \beta \\\ 22 & 3 & n\frac{3n-1}{2} \end{vmatrix}.

Step 5: Simplify: Subtract the rows:

2A10A5=121n22+α 242n22β 343n3n12.2A_{10} - A_5 = \begin{vmatrix} 12 & 1 & \frac{n^2}{2} + \alpha \\\ 24 & 2 & \frac{n^2}{2} - \beta \\\ 34 & 3 & n\frac{3n-1}{2} \end{vmatrix}.

Factor and simplify further:

=2[(n2β)(n2+2α)]=2(β2α).= -2 \left[ (n^2 - \beta) - (n^2 + 2\alpha) \right] = -2(-\beta - 2\alpha).

Therefore:

2A10A5=4α+2β.2A_{10} - A_5 = 4\alpha + 2\beta.