Question
Mathematics Question on Matrices
For α,β∈R and a natural number n, let Ar=r 2r\3r−21232n2+αn2−β2n(3n−1).Then 2A10−A8 is:
A
4α+2β
B
2α+4β
C
2n
D
0
Answer
4α+2β
Explanation
Solution
Step 1: Write the determinant for Ar:
Ar=r 2r 3r−21232n2+α2n2−βn23n−1.
Step 2: Expand 2A10: Substitute r=10:
2A10=2⋅10 20 281232n2+α2n2−βn23n−1.
Step 3: Expand A5: Substitute r=5:
A5=5 10 131232n2+α2n2−βn23n−1.
Step 4: Compute 2A10−A5:
2A10−A5=20 40 561232n2+α2n2−βn23n−1−8 16 221232n2+α2n2−βn23n−1.
Step 5: Simplify: Subtract the rows:
2A10−A5=12 24 341232n2+α2n2−βn23n−1.
Factor and simplify further:
=−2[(n2−β)−(n2+2α)]=−2(−β−2α).
Therefore:
2A10−A5=4α+2β.