Solveeit Logo

Question

Mathematics Question on Trigonometry

For α,β(0,π2)\alpha, \beta \in \left( 0, \frac{\pi}{2} \right), let 3sin(α+β)=2sin(αβ)3 \sin(\alpha + \beta) = 2 \sin(\alpha - \beta) and a real number kk be such that tanα=ktanβ\tan \alpha = k \tan \beta. Then the value of kk is equal to:

A

23-\frac{2}{3}

B

–5

C

23\frac{2}{3}

D

5

Answer

–5

Explanation

Solution

Given that

3sin(α+β)=2sin(αβ)3 \sin(\alpha + \beta) = 2 \sin(\alpha - \beta)

and a real number kk such that tanα=ktanβ\tan \alpha = k \tan \beta.

Expanding sin(α+β)\sin(\alpha + \beta) and sin(αβ)\sin(\alpha - \beta) using trigonometric identities:

sin(α+β)=sinαcosβ+cosαsinβ,\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta,

sin(αβ)=sinαcosβcosαsinβ.\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta.

Substituting these into the given equation:

3(sinαcosβ+cosαsinβ)=2(sinαcosβcosαsinβ).3(\sin \alpha \cos \beta + \cos \alpha \sin \beta) = 2(\sin \alpha \cos \beta - \cos \alpha \sin \beta).

Expanding both sides:

3sinαcosβ+3cosαsinβ=2sinαcosβ2cosαsinβ.3 \sin \alpha \cos \beta + 3 \cos \alpha \sin \beta = 2 \sin \alpha \cos \beta - 2 \cos \alpha \sin \beta.

Collecting terms involving sinαcosβ\sin \alpha \cos \beta and cosαsinβ\cos \alpha \sin \beta, we get:

3sinαcosβ2sinαcosβ=2cosαsinβ3cosαsinβ.3 \sin \alpha \cos \beta - 2 \sin \alpha \cos \beta = -2 \cos \alpha \sin \beta - 3 \cos \alpha \sin \beta.

Simplifying this:

sinαcosβ=5cosαsinβ.\sin \alpha \cos \beta = -5 \cos \alpha \sin \beta.

Dividing both sides by cosαcosβ\cos \alpha \cos \beta (assuming cosαcosβ0\cos \alpha \cos \beta \neq 0), we get:

tanα=5tanβ.\tan \alpha = -5 \tan \beta.

Therefore, the value of kk is:

k=5.k = -5.