Question
Mathematics Question on Trigonometry
For α,β∈(0,2π), let 3sin(α+β)=2sin(α−β) and a real number k be such that tanα=ktanβ. Then the value of k is equal to:
A
−32
B
–5
C
32
D
5
Answer
–5
Explanation
Solution
Given that
3sin(α+β)=2sin(α−β)
and a real number k such that tanα=ktanβ.
Expanding sin(α+β) and sin(α−β) using trigonometric identities:
sin(α+β)=sinαcosβ+cosαsinβ,
sin(α−β)=sinαcosβ−cosαsinβ.
Substituting these into the given equation:
3(sinαcosβ+cosαsinβ)=2(sinαcosβ−cosαsinβ).
Expanding both sides:
3sinαcosβ+3cosαsinβ=2sinαcosβ−2cosαsinβ.
Collecting terms involving sinαcosβ and cosαsinβ, we get:
3sinαcosβ−2sinαcosβ=−2cosαsinβ−3cosαsinβ.
Simplifying this:
sinαcosβ=−5cosαsinβ.
Dividing both sides by cosαcosβ (assuming cosαcosβ=0), we get:
tanα=−5tanβ.
Therefore, the value of k is:
k=−5.