Solveeit Logo

Question

Mathematics Question on Trigonometry

For α,β,γ0\alpha, \beta, \gamma \neq 0. If sin1α+sin1β+sin1γ=π\sin^{-1} \alpha + \sin^{-1} \beta + \sin^{-1} \gamma = \pi and (α+β+γ)(αγ+β)=3αβ(\alpha + \beta + \gamma)(\alpha - \gamma + \beta) = 3 \alpha \beta, then γ\gamma is equal to

A

32\frac{\sqrt{3}}{2}

B

12\frac{1}{\sqrt{2}}

C

3122\frac{\sqrt{3} - 1}{2\sqrt{2}}

D

3\sqrt{3}

Answer

32\frac{\sqrt{3}}{2}

Explanation

Solution

Let sin1α=A\sin^{-1} \alpha = A, sin1β=B\sin^{-1} \beta = B, sin1γ=C\sin^{-1} \gamma = C

A+B+C=πA + B + C = \pi

(α+β)2γ2=3αβ(\alpha + \beta)^2 - \gamma^2 = 3 \alpha \beta

α2+β2γ2=αβ\alpha^2 + \beta^2 - \gamma^2 = \alpha \beta

α2+β2γ22αβ=12\frac{\alpha^2 + \beta^2 - \gamma^2}{2 \alpha \beta} = \frac{1}{2}

cosC=12\Rightarrow \cos C = \frac{1}{2}

sinC=γ\sin C = \gamma

cosC=1γ2=12\cos C = \sqrt{1 - \gamma^2} = \frac{1}{2}

γ=32\gamma = \frac{\sqrt{3}}{2}