Solveeit Logo

Question

Mathematics Question on complex numbers

For all zCz \in C on the curve C1:z=4C_1:|z|=4, let the locus of the point z+1zz+\frac{1}{z} be the curve C2C_2 Then:

A

the curve C1C_1 lies inside C2C_2

B

the curves C1C_1 and C2C_2 intersect at 4 points

C

the curve C2C_2 lies inside C1C_1

D

the curves C1C_1 and C2C_2 intersect at 2 points

Answer

the curves C1C_1 and C2C_2 intersect at 4 points

Explanation

Solution

Let w=z+1z=4eiθ+14eiθw=z+\frac{1}{z}​=4e^{iθ}+\frac{1}{4}​e^{−iθ}

w=174  cos  θ+i154  sin  θ⇒w=\frac{17}{4}​\;cos\;θ+i\frac{15}{4}​\;sin\;θ

So locus of w is ellipse x2(174)2+y2(154)2=1\frac{x^2}{(\frac{17}{4})^2}+\frac{y^2}{(\frac{15}{4})^2}=1

Locus of zz is circle x2+y2=16x^2+y^2=16

So intersect at 44 points

The Correct Option is (B): the curves C1C_1 and C2C_2 intersect at 4 points