Solveeit Logo

Question

Mathematics Question on Application of derivatives

For all x(0,1)x\,\in\,(0,1)

A

$e^x,

B

loge(1+x)<x\log_e (1 + x) < x

C

sinx>x\sin x > x

D

logex>x\log_e x > x

Answer

loge(1+x)<x\log_e (1 + x) < x

Explanation

Solution

Let f(x)=ex1xf\left(x\right) = e^{x} - 1 - x then f(x)=ex1>0f'\left(x\right) =e^{x } - 1 >0 for x(0,1)x \in\left(0,1\right)
f(x)\therefore \, f(x) is an increasing function.
f(x)>f(0),x(0,1)\therefore \, f(x) > f(0) , \forall x \in (0,1)
ex1x>0ex>1+x\Rightarrow \, e^x - 1 - x > 0 \Rightarrow \, e^x > 1 + x
\therefore (a) does not hold.
(b) Let g(x)=log(1+x)xg(x) = log (1+x) -x
then g(x)=11+x1=x1+x<0,x(0,1)g'(x) = \frac{1}{1+x} - 1 = - \frac{x}{1+x} < 0 , \forall x \in (0,1)
g(x)\therefore \, g(x) is decreasing on (0,1)x>0(0, 1) \therefore x > 0
g(x)<g(0)\Rightarrow \, g (x) < g (0)
loge(1+x)x<0loge(1+x)<x\Rightarrow \, \log_e (1 + x) - x < 0 \, \Rightarrow \, \log_e (1 + x) < x