Solveeit Logo

Question

Question: For all values of \( A\& B \) ,Prove that \( \cos (A - B) = \cos A.\cos B - \operatorname{Sin} A.\op...

For all values of A&BA\& B ,Prove that cos(AB)=cosA.cosBSinA.SinB\cos (A - B) = \cos A.\cos B - \operatorname{Sin} A.\operatorname{Sin} B

Explanation

Solution

Hint : To calculate the value we first construct a circle and mark the points with respect to sine and cosine. Then, we will compare the two chords which subtend equal angles. Then we will be able to prove the equation by solving the equation.

Complete step by step solution:

Equal chords of a circle subtends equal angle at the centre.
Hence, P1P2{P_1}{P_2} chord and P0P3{P_0}{P_3} chord are equal as they both angles are the same at centre that is ABA - B .
P0P3=P1P2 (cos(AB)1)2+(sin(AB)0)2=(cosAcosB)2+(sinAsinB)2   {P_0}{P_3} = {P_1}{P_2} \\\ \Rightarrow \sqrt {{{(cos(A - B) - 1)}^2} + {{(sin(A - B) - 0)}^2}} = \sqrt {{{(\cos A - \cos B)}^2} + {{(\sin A - \sin B)}^2}} \;
(Using the distance formula)
Now, squaring both sides we will get,
(cos(AB)1)2+(sin(AB)0)2=(cosAcosB)2+(sinAsinB)2 Cos2(AB)+12cos(AB)+sin2(AB)=cos2A+cos2B2cosAcosB+sin2A+sin2B+2sinAsinB   {(cos(A - B) - 1)^2} + {(sin(A - B) - 0)^2} = {(\cos A - \cos B)^2} + {(\sin A - \sin B)^2} \\\ {\operatorname{Cos} ^2}(A - B) + 1 - 2\cos (A - B) + {\sin ^2}(A - B) = {\cos ^2}A + {\cos ^2}B - 2\cos A\cos B + {\sin ^2}A + {\sin ^2}B + 2\sin A\sin B \;
We know that sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1
Cos2(AB)+sin2(AB)+12cos(AB)=cos2A+sin2A+cos2B+sin2B2cosAcosB+2sinAsinB 1+12cos(AB)=1+12cosAcosB+2sinAsinB 22cos(AB)=22cosAcosB+2sinAsinB 2cos(AB)=2(cosAcosBsinAsinB)   \\{ {\operatorname{Cos} ^2}(A - B) + {\sin ^2}(A - B)\\} + 1 - 2\cos (A - B) = \\{ {\cos ^2}A + {\sin ^2}A\\} + \\{ {\cos ^2}B + {\sin ^2}B\\} - 2\cos A\cos B + 2\sin A\sin B \\\ \Rightarrow 1 + 1 - 2\cos (A - B) = 1 + 1 - 2\cos A\cos B + 2\sin A\sin B \\\ \Rightarrow {2} - 2\cos (A - B) ={2} - 2\cos A\cos B + 2\sin A\sin B \\\ \Rightarrow -{2}\cos (A - B) = -{2}(\cos A\cos B - \sin A\sin B) \;
Hence, cos(AB)=cosA.cosBsinA.sinBcos(A - B) = \cos A.\cos B - \sin A.\sin B
Therefore, for all values of A&BA\& B cos(AB)=cosA.cosBSinA.SinB\cos (A - B) = \cos A.\cos B - \operatorname{Sin} A.\operatorname{Sin} B

Note : Using cos(AB)\cos (A - B) and cos(A+B)\cos (A + B) we can further derive many other formulas like cos2x\cos 2x, cos3x\cos 3x, sin2x\sin 2x and sin3x\sin 3x. All these identities can be derived in the same manner as we did in the above question.