Question
Question: For all values of A, B, C and P, Q, R the value of \(\left| \begin{matrix} \cos(A - P) & \cos(A - Q...
For all values of A, B, C and P, Q, R the value of
cos(A−P)cos(B−P)cos(C−P)cos(A−Q)cos(B−Q)cos(C−Q)cos(A−R)cos(B−R)cos(C−R)is
A
0
B
cosAcosBcosC
C
sinAsinBsinC
D
cosPcosQcosR
Answer
0
Explanation
Solution
The determinant can be expanded as
\cos A\cos P + \sin A\sin P & \cos A\cos Q + \sin A\sin Q & \cos A\cos R + \sin A\sin R \\ \cos B\cos P + \sin B\sin P & \cos B\cos Q + \sin B\sin Q & \cos B\cos R + \sin B\sin R \\ \cos C\cos P + \sin C\sin P & \cos C\cos Q + \sin C\sin Q & \cos C\cos R + \sin C\sin R \end{matrix} \right| = \left| \begin{matrix} \cos A & \sin A & 0 \\ \cos B & \sin B & 0 \\ \cos C & \sin C & 0 \end{matrix} \right| \times \left| \begin{matrix} \cos P & \sin P & 0 \\ \cos Q & \sin Q & 0 \\ \cos R & \sin R & 0 \end{matrix} \right| = 0$$