Solveeit Logo

Question

Question: For all \[\theta \] in \[\left[ {0,\dfrac{\pi }{2}} \right]\], then \[\cos \left( {\sin \theta } \ri...

For all θ\theta in [0,π2]\left[ {0,\dfrac{\pi }{2}} \right], then cos(sinθ)\cos \left( {\sin \theta } \right) is
1)Less than sin(cosθ)\sin \left( {\cos \theta } \right)
2)Greater than sin(cosθ)\sin \left( {\cos \theta } \right)
3)Equal to sin(cosθ)\sin \left( {\cos \theta } \right)
4)None of these.

Explanation

Solution

Here we will use the proper range and domain of the sine and cosine function. So, we will use these properties of sine and cosine function to simplify the problem and also we will use the given co domain in solving this problem and finally we will use the trigonometric functions to get the final result.

Complete step-by-step answer:
We will consider the sum of sine and cosine function i.e cosθ+sinθ\cos \theta + \sin \theta .
Now, we will multiply and divide both the terms by the number 2\sqrt 2 . Therefore, we get
cosθ+sinθ=2(12cosθ+12sinθ)\Rightarrow \cos \theta + \sin \theta = \sqrt 2 \left( {\dfrac{1}{{\sqrt 2 }} \cdot \cos \theta + \dfrac{1}{{\sqrt 2 }} \cdot \sin \theta } \right)
We know the values of the trigonometric functions: cosπ4=12\cos \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }} and sinπ4=12\sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}.
Substituting cosπ4=12\cos \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }} and sinπ4=12\sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }} in the above equation, we get
cosθ+sinθ=2(sinπ4cosθ+cosπ4sinθ)\Rightarrow \cos \theta + \sin \theta = \sqrt 2 \left( {\sin \dfrac{\pi }{4} \cdot \cos \theta + \cos \dfrac{\pi }{4} \cdot \sin \theta } \right)
Now, we know from sum trigonometric identities that sin(x+y)=sinxcosy+sinycosx\sin \left( {x + y} \right) = \sin x \cdot \cos y + \sin y \cdot \cos x .
Now, using the identity , in the above question, we get
cosθ+sinθ=2sin(π4+θ)\Rightarrow \cos \theta + \sin \theta = \sqrt 2 \sin \left( {\dfrac{\pi }{4} + \theta } \right)
Here, from the given condition, we know:
sin(π4+θ)1\Rightarrow \sin \left( {\dfrac{\pi }{4} + \theta } \right) \le 1
Now, we will multiply both sides of inequality by 2\sqrt 2 . Therefore, we get
2sin(π4+θ)2\Rightarrow \sqrt 2 \sin \left( {\dfrac{\pi }{4} + \theta } \right) \le \sqrt 2 ………. (1)\left( 1 \right)
We know that 2\sqrt 2 is less than π2\dfrac{\pi }{2} i.e.
2<π2\sqrt 2 < \dfrac{\pi }{2}
So we can write equation (1)\left( 1 \right) as
2sin(π4+θ)<π2\Rightarrow \sqrt 2 \sin \left( {\dfrac{\pi }{4} + \theta } \right) < \dfrac{\pi }{2}
Thus, we get the result as
cosθ+sinθ<π2\Rightarrow \cos \theta + \sin \theta < \dfrac{\pi }{2}
Subtracting sinθ\sin \theta from both sides, we get
cosθ<π2sinθ\Rightarrow \cos \theta < \dfrac{\pi }{2} - \sin \theta
Now, we will take sine function on both sides of the inequality. Thus, we get
sin(cosθ)<sin(π2sinθ)\Rightarrow \sin \left( {\cos \theta } \right) < \sin \left( {\dfrac{\pi }{2} - \sin \theta } \right)
We know from periodic identity of trigonometry that sin(π2θ)=cosθ\sin \left( {\dfrac{\pi }{2} - \theta } \right) = \cos \theta
Using this identity here, we get
sin(cosθ)<cos(sinθ)\Rightarrow \sin \left( {\cos \theta } \right) < \cos \left( {\sin \theta } \right)
Thus, cos(sinθ)\cos \left( {\sin \theta } \right) is greater than sin(cosθ)\sin \left( {\cos \theta } \right).
Hence, the correct option is option 2.

Note: Here we have used trigonometric identities to simplify our equation. Trigonometric identities are defined as the equalities which involve the trigonometric functions. They are true for every value of the occurring variables for which both sides of the equality are defined. Also, all the trigonometric identities are periodic in nature as they repeat their values after a certain interval.