Solveeit Logo

Question

Question: For all real x, the minimum value of \(\frac{1 - x + x^{2}}{1 + x + x^{2}}\) is –...

For all real x, the minimum value of 1x+x21+x+x2\frac{1 - x + x^{2}}{1 + x + x^{2}} is –

A

0

B

1/3

C

1

D

3

Answer

1/3

Explanation

Solution

y = 1x+x21+x+x2\frac{1 - x + x^{2}}{1 + x + x^{2}} = 1 – 2x1+x+x2\frac{2x}{1 + x + x^{2}}

or y = 1 – 21x+1+x\frac{2}{\frac{1}{x} + 1 + x} = 1 – 2t\frac{2}{t}

y is min. when 2t\frac{2}{t} is max.

or t = 1x\frac{1}{x}+ 1 + x is min.

dtdx\frac{dt}{dx} = 1 – 1x2\frac{1}{x^{2}} = 0

\ x = 1, –1 ; d2tdx2\frac{d^{2}t}{dx^{2}}= 2x3\frac{2}{x^{3}} = + ive at x = 1 for min.

\ y (min.) = 1 – 23\frac{2}{3} = 13\frac{1}{3}

Alt. y = 1z\frac{1}{z} where z = 1+x+x21x+x2\frac{1 + x + x^{2}}{1 - x + x^{2}}. y is min. where z is max.

\ z = 3 \ y = 13\frac{1}{3}.