Solveeit Logo

Question

Mathematics Question on Applications of Derivatives

For all real values of xx, the minimum value of 1x+x21+x+x2\frac{1-x+x^{2}}{1+x+x^{2}} is

A

0

B

1

C

3

D

13\frac{1}{3}

Answer

13\frac{1}{3}

Explanation

Solution

Letƒ(x)=1x+x21+x+x2.Let ƒ(x)=\frac{1-x+x^{2}}{1+x+x^{2}.}

ƒ(x)=(1+x+x2)(1+2x)(1x+x2)(1+2x)(1+x+x2)2∴ƒ'(x)=\frac{(1+x+x^{2})(-1+2x)-(1-x+x^{2})(1+2x)}{(1+x+x^{2})^{2}}

=1+2xx+2x2x2+2x312x+x+2x2x22x3(1+x+x2)2=\frac{-1+2x-x+2x^{2}-x^{2}+2x^{3}-1-2x+x+2x^{2}-x^{2}-2x^{3}}{(1+x+x^{2})^{2}}

=2x22(1+x+x2)2=2(x21)(1+x+x2)2=\frac{2x^{2}-2}{(1+x+x^{2})^{2}}=\frac{2(x^{2}-1)}{(1+x+x^{2})^{2}}

ƒ(x)=0x2=1x=±1∴ƒ'(x)=0⇒x^{2}=1⇒x=\pm1

Now,ƒ(x)=2[(1+x+x2)2(2x)(x21)(2)(1+x+x2)(1+2x)](1+x+x2)4,ƒ''(x)=\frac{2[(1+x+x^{2})^{2}(2x)-(x^{2}-1)(2)(1+x+x^{2})(1+2x)]}{(1+x+x^{2})^{4}}

=4(1+x+x2)[(1+x+x2)x(x21)(1+2x)](1+x+x2)4=\frac{4(1+x+x^{2})[(1+x+x^{2})x-(x^{2}-1)(1+2x)]}{(1+x+x^{2})^{4}}

=4[x+x2+x3x22x3+1+2x](1+x+x2)3=\frac{4[x+x^{2}+x^{3}-x^{2}-2x^{3}+1+2x]}{(1+x+x^{2})^{3}}

=4(1+3xx3)(1+x+x2)3=\frac{4(1+3x-x^{3})}{(1+x+x^{2})^{3}}

And,ƒ(1)=4(1+31)(1+1+1)3=4(3)(3)3=49>0ƒ''(1)=\frac{4(1+3-1)}{(1+1+1)^{3}}=\frac{4(3)}{(3)^{3}}=\frac{4}{9}>0

Also,ƒ(1)=4(13+1)(11+3)3=4(1)=4<0ƒ''(-1)=\frac{4(1-3+1)}{(1-1+3)^{3}}=4(-1)=-4<0

⧠ By second derivative test,f is the minimum at x=1 x=1 and the minimum value is given

byƒ(1)=11+11+1+1=13 ƒ(1)=\frac{1-1+1}{1+1+1}=\frac{1}{3}

The correct answer is D.