Question
Mathematics Question on Applications of Derivatives
For all real values of x, the minimum value of 1+x+x21−x+x2 is
A
0
B
1
C
3
D
31
Answer
31
Explanation
Solution
Letƒ(x)=1+x+x2.1−x+x2
∴ƒ′(x)=(1+x+x2)2(1+x+x2)(−1+2x)−(1−x+x2)(1+2x)
=(1+x+x2)2−1+2x−x+2x2−x2+2x3−1−2x+x+2x2−x2−2x3
=(1+x+x2)22x2−2=(1+x+x2)22(x2−1)
∴ƒ′(x)=0⇒x2=1⇒x=±1
Now,ƒ′′(x)=(1+x+x2)42[(1+x+x2)2(2x)−(x2−1)(2)(1+x+x2)(1+2x)]
=(1+x+x2)44(1+x+x2)[(1+x+x2)x−(x2−1)(1+2x)]
=(1+x+x2)34[x+x2+x3−x2−2x3+1+2x]
=(1+x+x2)34(1+3x−x3)
And,ƒ′′(1)=(1+1+1)34(1+3−1)=(3)34(3)=94>0
Also,ƒ′′(−1)=(1−1+3)34(1−3+1)=4(−1)=−4<0
⧠ By second derivative test,f is the minimum at x=1 and the minimum value is given
byƒ(1)=1+1+11−1+1=31
The correct answer is D.