Solveeit Logo

Question

Mathematics Question on Differentiability

For all real values of a0,a1,a2,a3a_0, a_1, a_2, a_3 satisfying a0+a12+a23+a34=0a_{0}+\frac{a_{1}}{2}+\frac{a_{2}}{3}+\frac{a_{3}}{4}=0, the equation a0+a1x+a2x2+a3x3=0a_{0}+a_{1}x+a_{2}x^{2}+a_{3}x^{3}=0 has a real root in the interval

A

[0,1][0, 1]

B

[1,0][-1, 0]

C

[1,2][1, 2]

D

[2,1][-2, -1]

Answer

[0,1][0, 1]

Explanation

Solution

Let f(x)=a3x44+a2x33+a1x22+a0xf(x)=\frac{a_{3} x^{4}}{4}+\frac{a_{2} x^{3}}{3}+\frac{a_{1} x^{2}}{2}+a_{0} x
f(0)=0,f(1)=a34+a23+a12+a0=0\therefore f(0)=0, f(1)=\frac{a_{3}}{4}+\frac{a_{2}}{3}+\frac{a_{1}}{2}+a_{0}=0
f(0)=f(1)\Rightarrow f(0)=f(1)
f(x)=0\Rightarrow f'(x)=0 has atleast one real root in [0,1][0,1]
[according to Rolle's theorem]
f(x)=a3x3+a2x2+a1x+a0\therefore f'(x)=a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}
Hence, a3x3+a2x2+a1x+a0a_{3} x^{3}+a_{2} x^{2}+a_{1} x+ a_{0} must has a real root in the interval [0,1][0,1].