Solveeit Logo

Question

Question: Let $P(x) = x^{2025}$ and $Q(x) = x^4 + x^3 + 2x^2 + x + 1$. Let $R(x)$ be the polynomial remainder ...

Let P(x)=x2025P(x) = x^{2025} and Q(x)=x4+x3+2x2+x+1Q(x) = x^4 + x^3 + 2x^2 + x + 1. Let R(x)R(x) be the polynomial remainder when the polynomial P(x)P(x) is divided by the polynomial Q(x)Q(x). Find R(3)R(3).

A

21

B

53

C

7

D

1

Answer

53

Explanation

Solution

We are given P(x)=x2025P(x) = x^{2025} and Q(x)=x4+x3+2x2+x+1Q(x) = x^4 + x^3 + 2x^2 + x + 1. We need to find the remainder R(x)R(x) when P(x)P(x) is divided by Q(x)Q(x), and then evaluate R(3)R(3).

First, let's factorize Q(x)Q(x): Q(x)=x4+x3+2x2+x+1Q(x) = x^4 + x^3 + 2x^2 + x + 1 We can group terms: Q(x)=x2(x2+x+1)+(x2+x+1)Q(x) = x^2(x^2 + x + 1) + (x^2 + x + 1) Q(x)=(x2+1)(x2+x+1)Q(x) = (x^2 + 1)(x^2 + x + 1)

The roots of Q(x)Q(x) are the roots of x2+1=0x^2+1=0 and x2+x+1=0x^2+x+1=0.

Case 1: Roots of x2+x+1=0x^2+x+1=0. Let ω\omega be a root. Then ω2+ω+1=0\omega^2+\omega+1=0. Multiplying by (ω1)(\omega-1), we get ω31=0\omega^3-1=0, which means ω3=1\omega^3=1. If xx is a root of Q(x)Q(x), then P(x)=R(x)P(x) = R(x). So, R(x)=x2025R(x) = x^{2025}. Since ω3=1\omega^3=1, we can reduce the exponent 20252025 modulo 33. 2025÷3=6752025 \div 3 = 675 with a remainder of 00. So, ω2025=(ω3)675=1675=1\omega^{2025} = (\omega^3)^{675} = 1^{675} = 1. Thus, for any root xx of x2+x+1=0x^2+x+1=0, R(x)=1R(x)=1. This implies R(x)1(modx2+x+1)R(x) \equiv 1 \pmod{x^2+x+1}.

Case 2: Roots of x2+1=0x^2+1=0. Let ii be a root. Then i2+1=0i^2+1=0, so i2=1i^2=-1. The powers of ii cycle with a period of 4: i1=i,i2=1,i3=i,i4=1i^1=i, i^2=-1, i^3=-i, i^4=1. We need to reduce the exponent 20252025 modulo 44. 2025÷4=5062025 \div 4 = 506 with a remainder of 11. So, i2025=i4×506+1=(i4)506i1=1506i=ii^{2025} = i^{4 \times 506 + 1} = (i^4)^{506} \cdot i^1 = 1^{506} \cdot i = i. Thus, for any root xx of x2+1=0x^2+1=0, R(x)=xR(x)=x. This implies R(x)x(modx2+1)R(x) \equiv x \pmod{x^2+1}.

Now we have two congruences for R(x)R(x):

  1. R(x)1(modx2+x+1)R(x) \equiv 1 \pmod{x^2+x+1}
  2. R(x)x(modx2+1)R(x) \equiv x \pmod{x^2+1}

Since deg(Q(x))=4\deg(Q(x))=4, the remainder R(x)R(x) has a degree of at most 3. Let R(x)=ax3+bx2+cx+dR(x) = ax^3+bx^2+cx+d.

From R(x)1(modx2+x+1)R(x) \equiv 1 \pmod{x^2+x+1}, we can write R(x)=A(x)(x2+x+1)+1R(x) = A(x)(x^2+x+1) + 1. Since deg(R(x))3\deg(R(x)) \le 3, A(x)A(x) must be a linear polynomial, say mx+nmx+n. R(x)=(mx+n)(x2+x+1)+1=mx3+mx2+mx+nx2+nx+n+1=mx3+(m+n)x2+(m+n)x+(n+1)R(x) = (mx+n)(x^2+x+1) + 1 = mx^3 + mx^2 + mx + nx^2 + nx + n + 1 = mx^3 + (m+n)x^2 + (m+n)x + (n+1).

From R(x)x(modx2+1)R(x) \equiv x \pmod{x^2+1}, we can write R(x)=B(x)(x2+1)+xR(x) = B(x)(x^2+1) + x. Since deg(R(x))3\deg(R(x)) \le 3, B(x)B(x) must be a linear polynomial, say px+qpx+q. R(x)=(px+q)(x2+1)+x=px3+px+qx2+q+x=px3+qx2+(p+1)x+qR(x) = (px+q)(x^2+1) + x = px^3 + px + qx^2 + q + x = px^3 + qx^2 + (p+1)x + q.

Equating the two expressions for R(x)R(x): mx3+(m+n)x2+(m+n)x+(n+1)=px3+qx2+(p+1)x+qmx^3 + (m+n)x^2 + (m+n)x + (n+1) = px^3 + qx^2 + (p+1)x + q

Comparing coefficients:

  1. m=pm = p
  2. m+n=qm+n = q
  3. m+n=p+1m+n = p+1
  4. n+1=qn+1 = q

From (2) and (4), we have m+n=n+1m+n = n+1, which implies m=1m=1. Since m=pm=p from (1), we have p=1p=1. Substitute m=1m=1 into (2): 1+n=q1+n = q. This is consistent with (4). Substitute m=1m=1 into (3): 1+n=p+11+n = p+1. Since p=1p=1, this becomes 1+n=1+11+n = 1+1, so 1+n=21+n = 2, which gives n=1n=1. Now we find qq using q=n+1q=n+1: q=1+1=2q=1+1=2.

So, m=1,n=1,p=1,q=2m=1, n=1, p=1, q=2.

Substitute these values back into the expressions for R(x)R(x): Using the first form: R(x)=1x3+(1+1)x2+(1+1)x+(1+1)=x3+2x2+2x+2R(x) = 1x^3 + (1+1)x^2 + (1+1)x + (1+1) = x^3 + 2x^2 + 2x + 2. Using the second form: R(x)=1x3+2x2+(1+1)x+2=x3+2x2+2x+2R(x) = 1x^3 + 2x^2 + (1+1)x + 2 = x^3 + 2x^2 + 2x + 2. Both forms yield the same remainder R(x)=x3+2x2+2x+2R(x) = x^3 + 2x^2 + 2x + 2.

Finally, we need to find R(3)R(3): R(3)=(3)3+2(3)2+2(3)+2R(3) = (3)^3 + 2(3)^2 + 2(3) + 2 R(3)=27+2(9)+6+2R(3) = 27 + 2(9) + 6 + 2 R(3)=27+18+6+2R(3) = 27 + 18 + 6 + 2 R(3)=53R(3) = 53.

The first part of the question regarding f(n)f(n) and TT is incomplete and cannot be solved. The number 7 is likely an answer to that part. We have solved problem 21.