Solveeit Logo

Question

Question: For all \(n\in N,\cos \theta \cos 2\theta \cos 4\theta .............cos{{2}^{n-1}}\theta \) equal to...

For all nN,cosθcos2θcos4θ.............cos2n1θn\in N,\cos \theta \cos 2\theta \cos 4\theta .............cos{{2}^{n-1}}\theta equal to
a) sin2nθ2nsinθ\dfrac{\sin {{2}^{n}}\theta }{{{2}^{n}}\sin \theta }
b) sin2nθsinθ\dfrac{\sin {{2}^{n}}\theta }{\sin \theta }
c) cos2nθ2ncos2θ\dfrac{\cos {{2}^{n}}\theta }{{{2}^{n}}\cos 2\theta }
d) cos2nθ2nsinθ\dfrac{\cos {{2}^{n}}\theta }{{{2}^{n}}\sin \theta }

Explanation

Solution

Hint: Multiply and divide by sinθ\sin \theta to the given expression. Use the trigonometric identity of sin2θ\sin {2}\theta , which is given as
sin2θ=2sinθcosθ\sin 2\theta =2\sin \theta \cos \theta
Observe the given relation in the problem and put θ=2θ,22θ,23θ..............2n1θ\theta =2\theta ,{{2}^{2}}\theta ,{{2}^{3}}\theta {{..............2}^{n-1}}\theta in the expression mentioned above i.e.sin2θ=2sinθcosθ\sin 2\theta =2\sin \theta \cos \theta , to get values of sin22θ,sin23θ.........sin2nθ\sin {{2}^{2}}\theta ,\sin {{2}^{3}}\theta .........\sin {{2}^{n}}\theta .

Complete step-by-step answer:
Let the value of the given expression in the problem be ‘M’. so, we have
M=cosθ.cos2θ.cos4θ...........cos2n1θM=\cos \theta .\cos 2\theta .\cos 4\theta ...........\cos {{2}^{n-1}}\theta ………….. (i)
As we can observe the series with the angles of the cosine function that angles are increasing in powers of 2. It means the given series can be written as
M=cos20θcos21θcos22θcos23θ............cos2n1θM=\cos {{2}^{0}}\theta \cos {{2}^{1}}\theta \cos {{2}^{2}}\theta \cos {{2}^{3}}\theta ............\cos {{2}^{n-1}}\theta …………….. (ii)
Now, we know that we do not have any direct identity for solving this expression, so let us multiply and divide the whole relation by sinθ\sin \theta and try to convert the whole expression in a fraction. So, on multiplying and dividing the equation (ii) by sinθ\sin \theta , we get
M=sinθcosθcos2θcos22θ...........cos2n1θsinθM=\dfrac{\sin \theta \cos \theta \cos 2\theta \cos {{2}^{2}}\theta ...........\cos {{2}^{n-1}}\theta }{\sin \theta } ……………… (iii)
Now, we know the identity of sinθ\sin \theta can be given as
sinθ=2sinθcosθ\sin \theta =2\sin \theta \cos \theta ……………. (iv)
So, if we multiply the numerator by ‘2’, then we can replace the term 2sinθcosθ2\sin \theta \cos \theta by sin2θ\sin 2\theta using the identity given in the equation (iii). So, let us multiply and divide the equation (iii) by 2 and hence, we get
M=2sinθcosθcos2θcos22θ...........cos2n1θ2sinθM=\dfrac{2\sin \theta \cos \theta \cos 2\theta \cos {{2}^{2}}\theta ...........\cos {{2}^{n-1}}\theta }{2\sin \theta }
Replace 2sinθcosθ2\sin \theta \cos \theta by sinθ\sin \theta using equation (iv). So, we get
M=sin2θcos2θcos22θ..........cos2n1θ2sinθM=\dfrac{\sin 2\theta \cos 2\theta \cos {{2}^{2}}\theta ..........\cos {{2}^{n-1}}\theta }{2\sin \theta } ………………. (v)
Now, we know that the result (iv) becomessin4θ=2sin2θcos2θ\sin 4\theta =2\sin 2\theta \cos 2\theta , if we replace θ\theta by 2θ2\theta in the whole equation. So, we get
sin4θ=2sinθcosθ\sin 4\theta =2\sin \theta \cos \theta ………………(vi)
Now, multiply and divide the equation by ‘2’ and hence convert the term 2sin2θcos2θ2\sin 2\theta \cos 2\theta by sin4θ\sin 4\theta using equation (vi). So, we get
M=2sinθcos2θcos22θ.............cos2n1θ2×2sinθ M=sin4θ.cos22θ..........cos2n1θ2×2sinθ \begin{aligned} & M=\dfrac{2\sin \theta \cos 2\theta \cos {{2}^{2}}\theta .............\cos {{2}^{n-1}}\theta }{2\times 2\sin \theta } \\\ & M=\dfrac{\sin 4\theta .\cos {{2}^{2}}\theta ..........\cos {{2}^{n-1}}\theta }{2\times 2\sin \theta } \\\ \end{aligned}
M=sin22θcos22θ..........cos2n1θ22sinθM=\dfrac{\sin {{2}^{2}}\theta \cos {{2}^{2}}\theta ..........\cos {{2}^{n-1}}\theta }{{{2}^{2}}\sin \theta } ………… (vii)
Now, we can replace θ\theta by 4θ,22θ4\theta ,{{2}^{2}}\theta in the equation (iv) and get that
sin80=sin23θ=2sin22θcos22θ\sin 80=\sin {{2}^{3}}\theta =2\sin {{2}^{2}}\theta \cos {{2}^{2}}\theta ………………. (viii)
So, similarly, multiplying and divide the equation (vii) by ‘2’ and hence, we get
M=2sin22θcos22θcos23θ.............cos2n1θ23sinθM=\dfrac{2\sin {{2}^{2}}\theta \cos {{2}^{2}}\theta \cos {{2}^{3}}\theta .............\cos {{2}^{n-1}}\theta }{{{2}^{3}}\sin \theta }
M=sin23θcos23θ.............cos2n1θ23sinθM=\dfrac{\sin {{2}^{3}}\theta \cos {{2}^{3}}\theta .............\cos {{2}^{n-1}}\theta }{{{2}^{3}}\sin \theta }………………(ix)
Now, we can proceed in the similar way to the nth term as well i.e. up to the cos2n1θ\cos {{2}^{n-1}}\theta . And hence, only the power of 2in the denominator will change and we can continuously solve the numerator by using the identity (iv). So, we can get the result at last term as
M=sin2n1θcos2n1θ2n1sinθM=\dfrac{\sin {{2}^{n-1}}\theta \cos {{2}^{n-1}}\theta }{{{2}^{n-1}}\sin \theta } …………..(x)
Now, again multiply and divide the expression b ‘2’ and put θ=2n1\theta ={{2}^{n-1}} in the expression (iv) and hence, get that
sin2nθ=2sin2n1θcos2n1θ\sin {{2}^{n}}\theta =2\sin {{2}^{n-1}}\theta \cos {{2}^{n-1}}\theta
So, we get equation (x) as
M=2.sin2n1θcos2n1θ2.2n1sinθM=\dfrac{2.\sin {{2}^{n-1}}\theta \cos {{2}^{n-1}}\theta }{{{2.2}^{n-1}}\sin \theta }
or
M=sin2nθ2nsinθM=\dfrac{\sin {{2}^{n}}\theta }{{{2}^{n}}\sin \theta }……………. (xi)
Hence, value of the given expression in the problem is sin2nθ2nsinθ\dfrac{sin{{2}^{n}}\theta }{{{2}^{n}}\sin \theta }
So, option (a) is the correct answer.

Note: Multiplying and dividing by sinθ\sin \theta to the given expression and converting it to the form of sin2θ=2sinθcosθ\sin 2\theta =2\sin \theta \cos \theta is the key point of the question.
One may get the correct answer from the option by putting values of n to the expression and options. So, it can be another approach for getting write answers from the given options for these kinds of questions.
Observe the power of ‘2’ in denominator at the last step i.e.
M=sin2n1θcos2n1θ2n1sinθM=\dfrac{\sin {{2}^{n-1}}\theta \cos {{2}^{n-1}}\theta }{{{2}^{n-1}}\sin \theta } , very carefully.
One may go wrong if he/she puts power of 2 in the denominator as ‘n’ or ‘n – 2’ which are wrong. So, observe the power of ‘2’ in each step and don’t get confused with this step.