Solveeit Logo

Question

Differential Equations Question on Differential Equations

For a twice continuously differentiable function 𝑔: ℝ β†’ ℝ, define
ug(x,y)=1yβˆ«βˆ’yyg(x+t)dtΒ Β Β for(x,y)∈R2,Β Β Β y>0.u_g(x,y)=\frac{1}{y}\int^y_{-y}g(x+t)dt\ \ \ \text{for}(x,y)\in \R^2, \ \ \ y \gt0.
Which one of the following holds for all such 𝑔 ?

A

βˆ‚2ugβˆ‚x2=2yβˆ‚ugβˆ‚y+βˆ‚2ugβˆ‚y2\frac{βˆ‚^2u_g}{βˆ‚x^2}=\frac{2}{y}\frac{βˆ‚u_g}{βˆ‚y}+\frac{βˆ‚^2u_g}{βˆ‚y^2}

B

βˆ‚2ugβˆ‚x2=1yβˆ‚ugβˆ‚y+βˆ‚2ugβˆ‚y2\frac{βˆ‚^2u_g}{βˆ‚x^2}=\frac{1}{y}\frac{βˆ‚u_g}{βˆ‚y}+\frac{βˆ‚^2u_g}{βˆ‚y^2}

C

βˆ‚2ugβˆ‚x2=2yβˆ‚ugβˆ‚yβˆ’βˆ‚2ugβˆ‚y2\frac{βˆ‚^2u_g}{βˆ‚x^2}=\frac{2}{y}\frac{βˆ‚u_g}{βˆ‚y}-\frac{βˆ‚^2u_g}{βˆ‚y^2}

D

βˆ‚2ugβˆ‚x2=1yβˆ‚ugβˆ‚yβˆ’βˆ‚2ugβˆ‚y2\frac{βˆ‚^2u_g}{βˆ‚x^2}=\frac{1}{y}\frac{βˆ‚u_g}{βˆ‚y}-\frac{βˆ‚^2u_g}{βˆ‚y^2}

Answer

βˆ‚2ugβˆ‚x2=2yβˆ‚ugβˆ‚y+βˆ‚2ugβˆ‚y2\frac{βˆ‚^2u_g}{βˆ‚x^2}=\frac{2}{y}\frac{βˆ‚u_g}{βˆ‚y}+\frac{βˆ‚^2u_g}{βˆ‚y^2}

Explanation

Solution

The correct option is (A) : βˆ‚2ugβˆ‚x2=2yβˆ‚ugβˆ‚y+βˆ‚2ugβˆ‚y2\frac{βˆ‚^2u_g}{βˆ‚x^2}=\frac{2}{y}\frac{βˆ‚u_g}{βˆ‚y}+\frac{βˆ‚^2u_g}{βˆ‚y^2}.