Solveeit Logo

Question

Question: For a tribasic acid, $H_3A$, $K_{a1}=10^{-4}$, $K_{a2}=10^{-8}$ and $K_{a3}=10^{-12}$. Match the pH ...

For a tribasic acid, H3AH_3A, Ka1=104K_{a1}=10^{-4}, Ka2=108K_{a2}=10^{-8} and Ka3=1012K_{a3}=10^{-12}. Match the pH (Column II) of the resulting solution (Column I) at 250C.

A

Equimolar mixture of H3AH_3A and NaH2ANaH_2A.

B

Equimolar mixture of NaH2ANaH_2A and Na2HANa_2HA.

C

Equimolar mixture of Na2HANa_2HA and Na3ANa_3A.

D

Equimolar mixture of H3AH_3A and NaOH.

E

12.0

F

8.0

G

4.0

H

6.0

I

10.0

Answer

A → R; B → Q; C → P; D → S

Explanation

Solution

The problem requires matching the pH of solutions formed from a tribasic acid H3AH_3A and its salts, given Ka1=104K_{a1}=10^{-4}, Ka2=108K_{a2}=10^{-8}, and Ka3=1012K_{a3}=10^{-12}. This implies pKa1=4.0pK_{a1} = 4.0, pKa2=8.0pK_{a2} = 8.0, and pKa3=12.0pK_{a3} = 12.0.

  • (A) Equimolar mixture of H3AH_3A and NaH2ANaH_2A: This is a buffer solution of H3A/H2AH_3A/H_2A^-. Using the Henderson-Hasselbalch equation, pH=pKa1+log[H2A][H3A]pH = pK_{a1} + \log \frac{[H_2A^-]}{[H_3A]}. Since the concentrations are equimolar, pH=pKa1=4.0pH = pK_{a1} = 4.0. Thus, A → R.

  • (B) Equimolar mixture of NaH2ANaH_2A and Na2HANa_2HA: This is a buffer solution of H2A/HA2H_2A^-/HA^{2-}. The Henderson-Hasselbalch equation gives pH=pKa2+log[HA2][H2A]pH = pK_{a2} + \log \frac{[HA^{2-}]}{[H_2A^-]}. With equimolar concentrations, pH=pKa2=8.0pH = pK_{a2} = 8.0. Thus, B → Q.

  • (C) Equimolar mixture of Na2HANa_2HA and Na3ANa_3A: This is a buffer solution of HA2/A3HA^{2-}/A^{3-}. The Henderson-Hasselbalch equation gives pH=pKa3+log[A3][HA2]pH = pK_{a3} + \log \frac{[A^{3-}]}{[HA^{2-}]}. With equimolar concentrations, pH=pKa3=12.0pH = pK_{a3} = 12.0. Thus, C → P.

  • (D) Equimolar mixture of H3AH_3A and NaOHNaOH: The reaction H3A+NaOHNaH2A+H2OH_3A + NaOH \rightarrow NaH_2A + H_2O goes to completion, forming NaH2ANaH_2A. The H2AH_2A^- species is amphoteric. The pH is approximately the average of pKa1pK_{a1} and pKa2pK_{a2}: pHpKa1+pKa22=4.0+8.02=6.0pH \approx \frac{pK_{a1} + pK_{a2}}{2} = \frac{4.0 + 8.0}{2} = 6.0. Thus, D → S.

Therefore, the correct matching is A → R; B → Q; C → P; D → S.