Solveeit Logo

Question

Question: For a triangle ABC, prove that \[\cos A + \cos B + \cos C \le \dfrac{3}{2}\] In the case of equa...

For a triangle ABC, prove that
cosA+cosB+cosC32\cos A + \cos B + \cos C \le \dfrac{3}{2}
In the case of equality, the triangle will be equilateral.

Explanation

Solution

We will begin by taking the LHS of the inequality as some variable xx. We will convert the sum of the first two terms into a product. We will use half-angle identity for the third term. Then, we will form a quadratic equation and finally, we will prove the inequality.

Formula used:
We will use the following formulas:

  1. Sum to product rule: cosA+cosB=2cos(A+B2)cos(AB2)\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)
  2. Half-angle identity: cosA=12sin2A2\cos A = 1 - 2{\sin ^2}\dfrac{A}{2}

Complete step by step solution:
We are required to prove that cosA+cosB+cosC32\cos A + \cos B + \cos C \le \dfrac{3}{2}.
Also, we are supposed to prove that if cosA+cosB+cosC=32\cos A + \cos B + \cos C = \dfrac{3}{2}, then the triangle is an equilateral triangle.
Let us consider the LHS as some variable xx i.e., cosA+cosB+cosC=x\cos A + \cos B + \cos C = x ……….(1)(1)
We will convert the sum of the first two terms into a product. We get
cosA+cosB=2cos(A+B2)cos(AB2)\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)
Now, we will convert the last term i.e., cosC\cos C using a half-angle identity. We have
cosC=12sin2C2\cos C = 1 - 2{\sin ^2}\dfrac{C}{2}
Using these in equation (1)(1), we get
2cos(A+B2)cos(AB2)+12sin2C2=x2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right) + 1 - 2{\sin ^2}\dfrac{C}{2} = x ………(2)(2)
We know that in a triangle, the sum of the angles is 180180^\circ or π\pi radians. i.e., A+B+C=πA + B + C = \pi . From this, we get A+B=πCA + B = \pi - C. Substituting this in equation (2)(2), we have
2cos(πC2)cos(AB2)+12sin2C2=x2\cos \left( {\dfrac{{\pi - C}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right) + 1 - 2{\sin ^2}\dfrac{C}{2} = x ………(3)(3)
We know that cos(π2θ)=sinθ\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta . Using this in equation (3)(3), we get
2sinC2cos(AB2)+12sin2C2=x2\sin \dfrac{C}{2}\cos \left( {\dfrac{{A - B}}{2}} \right) + 1 - 2{\sin ^2}\dfrac{C}{2} = x
Let us write the above equation as a quadratic equation in sinC2\sin \dfrac{C}{2}. We have
2sin2C2+2sinC2cos(AB2)+1x=0- 2{\sin ^2}\dfrac{C}{2} + 2\sin \dfrac{C}{2}\cos \left( {\dfrac{{A - B}}{2}} \right) + 1 - x = 0
Multiplying throughout the above equation by (1)( - 1), we get
2sin2C22sinC2cos(AB2)1+x=02{\sin ^2}\dfrac{C}{2} - 2\sin \dfrac{C}{2}\cos \left( {\dfrac{{A - B}}{2}} \right) - 1 + x = 0 ……..(4)(4)
Equation (4)(4) is a quadratic equation in sinC2\sin \dfrac{C}{2}. Since sinC2\sin \dfrac{C}{2} is real, the discriminant of the above
equation is greater than or equal to zero.
The discriminant of equation (4)(4) is Δ=b24ac\Delta = {b^2} - 4ac i.e., Δ=(2cosAB2)24(2)(1x)\Delta = {\left( {2\cos \dfrac{{A - B}}{2}} \right)^2} - 4(2)(1 - x). Simplifying this discriminant, we get
Δ=4cos2(AB2)4(2x2)0\Delta = 4{\cos ^2}\left( {\dfrac{{A - B}}{2}} \right) - 4(2x - 2) \ge 0
Dividing throughout the inequality by 4, we get
cos2(AB2)(2x2)0{\cos ^2}\left( {\dfrac{{A - B}}{2}} \right) - (2x - 2) \ge 0
Transposing the term 2x22x - 2 to the RHs of the inequality, we get
cos2(AB2)(2x2){\cos ^2}\left( {\dfrac{{A - B}}{2}} \right) \ge (2x - 2) ………(5)(5)
We know that cosθ1\cos \theta \le 1. So, cos2(AB2)1{\cos ^2}\left( {\dfrac{{A - B}}{2}} \right) \le 1. Using this in inequality (5)(5), we have
2x212x - 2 \le 1
x32\Rightarrow x \le \dfrac{3}{2} ……….(6)(6)
From equation (1)(1)and inequality (6)(6), we get
cosA+cosB+cosC32\cos A + \cos B + \cos C \le \dfrac{3}{2}
Now, we have to show that if cosA+cosB+cosC=32\cos A + \cos B + \cos C = \dfrac{3}{2}, then the triangle is equilateral. An equilateral triangle is one in which all sides and all angles are equal.
Consider cosA+cosB+cosC=32\cos A + \cos B + \cos C = \dfrac{3}{2}
We can write 32\dfrac{3}{2} as 3×(12)3 \times \left( {\dfrac{1}{2}} \right) which is 12+12+12\dfrac{1}{2} + \dfrac{1}{2} + \dfrac{1}{2}.
So, cosA+cosB+cosC=12+12+12\cos A + \cos B + \cos C = \dfrac{1}{2} + \dfrac{1}{2} + \dfrac{1}{2}.
Let us take cosA=12\cos A = \dfrac{1}{2}, cosB=12\cos B = \dfrac{1}{2} and cosC=12\cos C = \dfrac{1}{2}.
Now, to find the angles A,BA,B and CC, we have A=cos1(12)A = {\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right), B=cos1(12)B = {\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right) and C=cos1(12)C = {\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right)
Since A,BA,B and CC are acute angles, the only possibility is that cos1(12)=60{\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right) = 60^\circ . Hence, A=B=CA = B = C

Therefore, the triangle is an equilateral triangle.

Note:
For the equality part, we can use an alternate method. We will use the law of cosines and the fact that the sum of two sides of a triangle is always greater than the third side. Law of cosines states that “If A,BA,B and CC are the angles of a triangle ABCABC, and a,b,ca,b,c are the sides opposite to the angles A,BA,B and CC respectively, then
cosA=b2+c2a22bc\cos A = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}, cosB=c2+a2b22ac\cos B = \dfrac{{{c^2} + {a^2} - {b^2}}}{{2ac}}, and cosC=a2+b2c22ab\cos C = \dfrac{{{a^2} + {b^2} - {c^2}}}{{2ab}}
Also, a+b>ca + b > c, c+b>ac + b > a and a+c>ba + c > b.