Solveeit Logo

Question

Question: For a triangle ABC prove that: \( \cos A + \cos B + \cos C \leqslant \dfrac{3}{2} \) and for the cas...

For a triangle ABC prove that: cosA+cosB+cosC32\cos A + \cos B + \cos C \leqslant \dfrac{3}{2} and for the case of equality the triangle will be equilateral.

Explanation

Solution

Hint : First we save the inequality part of the problem by using standard trigonometric formulae and then by deducing the result of the first part we try to get to the required condition of an equilateral triangle i.e. each angle of it is of 60 degrees.

Complete step-by-step answer :
Firstly we write down the inequality to see how we proceed
cosA+cosB+cosC32\cos A + \cos B + \cos C \leqslant \dfrac{3}{2}
We assume this inequality to be
A=cosA+cosB+cosC32{\rm A} = \cos A + \cos B + \cos C \leqslant \dfrac{3}{2}
Now we subtract 32\dfrac{3}{2} from both sides of the inequality i.e.
A=cosA+cosB+cosC320 - - - - - - - - equation(1){\rm A} = \cos A + \cos B + \cos C - \dfrac{3}{2} \leqslant 0\,{\text{ - - - - - - - - equation(1)}}
Now using these formulae to solve it further

Cosα+Cosβ=2Cosα+β2Cosαβ2 and Cosϕ=12Sin2ϕ2  \operatorname{Cos} \alpha + \operatorname{Cos} \beta = 2\operatorname{Cos} \dfrac{{\alpha + \beta }}{2}\operatorname{Cos} \dfrac{{\alpha - \beta }}{2} \\\ {\text{and}} \\\ \operatorname{Cos} \phi = 1 - 2{\operatorname{Sin} ^2}\dfrac{\phi }{2} \\\

Applying the formulae
A=2cosA+B2cosAB2+12sin2C232 - - - - - - equation(2){\rm A} = 2\cos \dfrac{{A + B}}{2}\cos \dfrac{{A - B}}{2} + 1 - 2{\sin ^2}\dfrac{C}{2} - \dfrac{3}{2}\,{\text{ - - - - - - equation(2)}}
We know that in ABC,A+B+C=180\vartriangle ABC,\angle A + \angle B + \angle C = 180^\circ so we have
A+B=180C A+B2=90C2  \angle A + \angle B = 180^\circ - \angle C \\\ \dfrac{{\angle A + \angle B}}{2} = 90^\circ - \dfrac{{\angle C}}{2} \\\
Taking ‘Cosine’ function on both sides of the equation gives us

Cos(A+B2)=Cos(90C2) Cos(A+B2)=  Sin(C2) - - - - - - - - - Cos(90θ)=Sinθ  \operatorname{Cos} \left( {\dfrac{{\angle A + \angle B}}{2}} \right) = \operatorname{Cos} \left( {90^\circ - \dfrac{{\angle C}}{2}} \right) \\\ \Rightarrow \operatorname{Cos} \left( {\dfrac{{\angle A + \angle B}}{2}} \right) = \;\operatorname{Sin} \left( {\dfrac{{\angle C}}{2}} \right)\,{\text{ - - - - - - - - - }}\\{ \because \operatorname{Cos} (90^\circ - \theta ) = \operatorname{Sin} \theta \\} \\\

Putting the value in equation (2)
A=2sinC2cosAB2+12sin2C232 A=2sin2C2+2sinC2cosAB212   {\rm A} = 2\sin \dfrac{C}{2}\cos \dfrac{{A - B}}{2} + 1 - 2{\sin ^2}\dfrac{C}{2} - \dfrac{3}{2} \\\ \Rightarrow {\rm A} = - 2{\sin ^2}\dfrac{C}{2} + 2\sin \dfrac{C}{2}\cos \dfrac{{A - B}}{2} - \dfrac{1}{2} \;
We assume the value of sinC2=p\sin \dfrac{C}{2} = p
A=2p2+2pcosAB212 - - - - - - - - - equation(3)\Rightarrow {\rm A} = - 2{p^2} + 2p\cos \dfrac{{A - B}}{2} - \dfrac{1}{2}\,{\text{ - - - - - - - - - equation(3)}}
We know that by equation (1): A<0{\rm A} < 0 , This means the sign of the quadratic equation will be negative thus the delta which is given by b24ac\sqrt {{b^2} - 4ac} will be negative i.e.
b24ac<0\sqrt {{b^2} - 4ac} < 0
Comparing equation (3) with the standard equation we have
a=2 b=2cosAB2 c=12   a = - 2 \\\ b = 2\cos \dfrac{{A - B}}{2} \\\ c = - \dfrac{1}{2} \;
Calculating the delta Δ\Delta

(2cosAB2)4×(2)×(12) (4cos2AB2)4   \sqrt {\left( {2\cos \dfrac{{A - B}}{2}} \right) - 4 \times \left( { - 2} \right) \times \left( { - \dfrac{1}{2}} \right)} \\\ \Rightarrow \sqrt {\left( {4{{\cos }^2}\dfrac{{A - B}}{2}} \right) - 4} \;

We know that 1cosθ1 - 1 \leqslant \cos \theta \leqslant 1
cos2AB21 A0   \Rightarrow {\cos ^2}\dfrac{{A - B}}{2} \leqslant 1 \\\ \Rightarrow {\rm A} \leqslant 0 \;
From equation (1) we can say now that
A=cosA+cosB+cosC32{\rm A} = \cos A + \cos B + \cos C \leqslant \dfrac{3}{2}
Now coming to the second part of the problem which says that for the case of equality the triangle will be equilateral so for that the quadratic equation that we have in equation (3) i.e.
A=2p2+2pcosAB212{\rm A} = - 2{p^2} + 2p\cos \dfrac{{A - B}}{2} - \dfrac{1}{2}
The delta Δ\Delta here should be zero so we have
(4cos2AB2)4=0 2(cosAB21)=0 cos(AB2)=1   \sqrt {\left( {4{{\cos }^2}\dfrac{{A - B}}{2}} \right) - 4} = 0 \\\ \Rightarrow 2\left( {\cos \dfrac{{A - B}}{2} - 1} \right) = 0 \\\ \Rightarrow \cos \left( {\dfrac{{A - B}}{2}} \right) = 1 \;
We know that
cos0=1 cosAB2=cos0 A=B   \cos 0^\circ = 1 \\\ \Rightarrow \cos \dfrac{{A - B}}{2} = \cos 0^\circ \\\ \Rightarrow A = B \;
Putting these values in equation (3) and solving the quadratic equation
A=2p2+2pcosAA212=0 4p2+4p1=0 4p24p+1=0   {\rm A} = - 2{p^2} + 2p\cos \dfrac{{A - A}}{2} - \dfrac{1}{2} = 0 \\\ \Rightarrow - 4{p^2} + 4p - 1 = 0 \\\ \Rightarrow 4{p^2} - 4p + 1 = 0 \;
Solving the quadratic equation using grouping method gives us
4p22p2p+1=0 2p(2p1)1(2p1)=0 (2p1)2=0  4{p^2} - 2p - 2p + 1 = 0 \\\ \Rightarrow 2p(2p - 1) - 1(2p - 1) = 0 \\\ \Rightarrow {(2p - 1)^2} = 0 \\\
We know that p=sinC2alsop=12p = \sin \dfrac{C}{2}\,{\text{also}}\,p = \dfrac{1}{2} so after equating the two we have
sinC2=12 C=60  A+B=120  (A+B+C=180)  \sin \dfrac{C}{2} = \dfrac{1}{2} \\\ \Rightarrow C = 60^\circ \; \Rightarrow A + B = 120^\circ \;(\therefore A + B + C = 180^\circ ) \\\
Also A=BA = B so we can say that
A=B=C=60A = B = C = 60^\circ
This is the required condition of an equilateral triangle so ABC  \vartriangle ABC\; is equilateral.
So, the correct answer is “ ABC  \vartriangle ABC\; is equilateral”.

Note : Inequalities are solved by applying basic mathematical operations on both sides of it. We cannot just shift elements on one side in the given problem like we do in case of an ‘equals to’ sign. It works a bit different and we changed its sign by multiplying a negative number on both sides of it.