Solveeit Logo

Question

Mathematics Question on Adjoint of a Matrix

For a square matrix } A_{n \times n}:
(A) adj A=An1|\text{adj } A| = |A|^{n-1}
(B) A=adj An1|A| = |\text{adj } A|^{n-1}
(C) A(adj A)=AA (\text{adj } A) = |A|
(D) A1=1A|A^{-1}| = \frac{1}{|A|}
Choose the correct answer from the options given below:\text{Choose the \textbf{correct} answer from the options given below:}

A

(B) and (D) only

B

(A) and (D) only

C

(A), (C), and (C) only

D

(B), (C), and (D) only

Answer

(A) and (D) only

Explanation

Solution

For a square matrix An×nA_{n \times n}, the determinant of the adjugate of AA is given by:

adjA=An1.|\text{adj} \, A| = |A|^{n-1}.

This property confirms that (A) is correct.

For the inverse of a matrix:

A1=1A.|A^{-1}| = \frac{1}{|A|}.

This property confirms that (D) is correct.

(C) is not part of the correct answer because while the relation A(adjA)=AIA (\text{adj} \, A) = |A| I is valid, it is not relevant to the determinant properties discussed here.

(B) is incorrect because AadjAn1|A| \neq |\text{adj} \, A|^{n-1}. It is a misstatement of the property.

Thus, the correct options are:

(A)(A) and (D)(D).