Solveeit Logo

Question

Question: For a set of values of a, b if \({{\log }_{10}}2=a\) and \({{\log }_{10}}3=b\) then log 5.4 can be e...

For a set of values of a, b if log102=a{{\log }_{10}}2=a and log103=b{{\log }_{10}}3=b then log 5.4 can be expressed as
A. a -3b-1
B. a+3b+1
C. a+3b-1
D. a-3b+1

Explanation

Solution

To solve this question, we should know a property used in logarithms. That is logx(a×b×c...d×e..)=logxa+logxb+logxc....logxdlogxe...{{\log }_{x}}\left( \dfrac{a\times b\times c...}{d\times e..} \right)={{\log }_{x}}a+{{\log }_{x}}b+{{\log }_{x}}c....-{{\log }_{x}}d-{{\log }_{x}}e.... To use this property in the question, we have to write 5.4 as a product of 2, 3, and 10. After writing 5.4 in terms of 2, 3, and 10, we apply logarithm to the equation and we use the property of logarithms to get the required answer.

Complete step-by-step solution:
In the question, it is given that log102=a{{\log }_{10}}2=a and log103=b{{\log }_{10}}3=b and we are asked to find the value of log105.4{{\log }_{10}}5.4. We have to do the factorisation of 5.4 and write it in terms of 2, 3, 10. We can do the factorisation of 54 and divide the factors by 10 to get the factors for 5.4. By doing prime factorisation of 54, we get
2!54 3!27 3!9 3!3 !1 \begin{aligned} & 2\left| \\!{\underline {\, 54 \,}} \right. \\\ & 3\left| \\!{\underline {\, 27 \,}} \right. \\\ & 3\left| \\!{\underline {\, 9 \,}} \right. \\\ & 3\left| \\!{\underline {\, 3 \,}} \right. \\\ & \left| \\!{\underline {\, 1 \,}} \right. \\\ \end{aligned}
From this we can write, 54=2×3×3×354=2\times 3\times 3\times 3
As we know that 5.4=54105.4=\dfrac{54}{10}, writing this in the above equation, we get
5.4=5410=2×3×3×3105.4=\dfrac{54}{10}=\dfrac{2\times 3\times 3\times 3}{10}
Applying logarithm of base 10 on both sides, we get
log105.4=log10(2×3×3×310)(1){{\log }_{10}}5.4={{\log }_{10}}\left( \dfrac{2\times 3\times 3\times 3}{10} \right)\to \left( 1 \right)
We have to apply the property related to logarithms in the above equation. The property is
logx(a×b×c...d×e..)=logxa+logxb+logxc....logxdlogxe...{{\log }_{x}}\left( \dfrac{a\times b\times c...}{d\times e..} \right)={{\log }_{x}}a+{{\log }_{x}}b+{{\log }_{x}}c....-{{\log }_{x}}d-{{\log }_{x}}e...
Using this property in the equation-1, we get
log105.4=log102+log103+log103+log103log1010{{\log }_{10}}5.4={{\log }_{10}}2+{{\log }_{10}}3+{{\log }_{10}}3+{{\log }_{10}}3-{{\log }_{10}}10
We know that logaa=1{{\log }_{a}}a=1.
Using this in the above equation and simplifying, we get
log105.4=log102+3×log1031{{\log }_{10}}5.4={{\log }_{10}}2+3\times {{\log }_{10}}3-1
In the question, it is given that log102=a{{\log }_{10}}2=a and log103=b{{\log }_{10}}3=b.
Substituting a and b in above equation, we get
log105.4=a+3b1{{\log }_{10}}5.4=a+3b-1
log105.4=a+3b1\therefore {{\log }_{10}}5.4=a+3b-1. The answer is option-C.

Note: The problem can be done in another way. That is
logxa=na=xn{{\log }_{x}}a=n\Rightarrow a={{x}^{n}}
Using this relation, we can write
log102=a2=10a log103=b3=10b \begin{aligned} & {{\log }_{10}}2=a\Rightarrow 2={{10}^{a}} \\\ & {{\log }_{10}}3=b\Rightarrow 3={{10}^{b}} \\\ \end{aligned}
As we know

& {{\log }_{10}}5.4={{\log }_{10}}\left( \dfrac{2\times 3\times 3\times 3}{10} \right) \\\ & {{\log }_{10}}5.4={{\log }_{10}}\left( \dfrac{{{10}^{a}}\times {{10}^{b}}\times {{10}^{b}}\times {{10}^{b}}}{10} \right) \\\ \end{aligned}$$ $\dfrac{{{a}^{x}}\times {{a}^{y}}}{{{a}^{z}}}={{a}^{x+y-z}}$. Using this, we get $\begin{aligned} & {{\log }_{10}}5.4={{\log }_{10}}\left( \dfrac{{{10}^{a}}\times {{10}^{3b}}}{10} \right) \\\ & {{\log }_{10}}5.4={{\log }_{10}}\left( {{10}^{a+3b-1}} \right) \\\ \end{aligned}$ We have to use the property ${{\log }_{a}}{{a}^{n}}=n{{\log }_{a}}a=n$ ${{\log }_{10}}5.4={{\log }_{10}}\left( {{10}^{a+3b-1}} \right)=\left( a+3b-1 \right){{\log }_{a}}a=a+3b-1$ The answer is option-C.