Solveeit Logo

Question

Question: For a sequence \(\left\\{ {{a_n}} \right\\},{\text{ }}{a_1} = 2{\text{ and }}\dfrac{{{a_{n + 1}}}}{{...

For a sequence \left\\{ {{a_n}} \right\\},{\text{ }}{a_1} = 2{\text{ and }}\dfrac{{{a_{n + 1}}}}{{{a_n}}} = \dfrac{1}{3}{\text{ , then }}\sum\limits_{r = 1}^{20} {{a_r}} {\text{ is}} ;
(1)(202)(4+19×3)\left( 1 \right)\left( {\dfrac{{20}}{2}} \right)\left( {4 + 19 \times 3} \right)
(2)3(11320)\left( 2 \right)3\left( {1 - \dfrac{1}{{{3^{20}}}}} \right)
(3)2(1320)\left( 3 \right)2\left( {1 - {3^{20}}} \right)
(4)\left( 4 \right) None of these

Explanation

Solution

To solve this question we must be familiar with the basic concept of geometric progression. A geometric progression is a sequence in which each next term is generated by multiplying the previous term with a constant value. General representation of a geometric sequence is \left\\{ {a,ar,a{r^2},a{r^3},.....} \right\\} where aa is the first term of the sequence and rr is called the common ratio between the terms (r=First termSecond term)\left( {r = \dfrac{{{\text{First term}}}}{{{\text{Second term}}}}} \right) . Example of a geometric progression: 4,8,16,32,644,8,16,32,64 is in G.P. having a common ratio of 22 .

Complete step by step solution:
The first term of the sequence is ;
a1=2\Rightarrow {a_1} = 2
an+1an=13\Rightarrow \dfrac{{{a_{n + 1}}}}{{{a_n}}} = \dfrac{1}{3} ( common ratio )
Which means on rearranging we can say; an+1=an3 ......(1){a_{n + 1}} = \dfrac{{{a_n}}}{3}{\text{ }}......\left( 1 \right)
This series is in geometric progression with common ratio r=13r = \dfrac{1}{3} and a1=2{a_1} = 2 ;
Therefore, we can calculate successive or preceding terms as;
Put the value of n=1n = 1 , in equation (1)\left( 1 \right) ;
a2=a13=23\Rightarrow {a_2} = \dfrac{{{a_1}}}{3} = \dfrac{2}{3}
Put the value of n=2n = 2 , in equation (1)\left( 1 \right) ;
a3=a23=23(13)\Rightarrow {a_3} = \dfrac{{{a_2}}}{3} = \dfrac{2}{3}\left( {\dfrac{1}{3}} \right)
Put the value of n=3n = 3 , in equation (1)\left( 1 \right) ;
a4=a33=23(13)2\Rightarrow {a_4} = \dfrac{{{a_3}}}{3} = \dfrac{2}{3}{\left( {\dfrac{1}{3}} \right)^2}
Put the value of n=4n = 4 , in equation (1)\left( 1 \right) ;
a5=a43=23(13)3\Rightarrow {a_5} = \dfrac{{{a_4}}}{3} = \dfrac{2}{3}{\left( {\dfrac{1}{3}} \right)^3}
We notice the pattern is ar=23(13)r2{a_r} = \dfrac{2}{3}{\left( {\dfrac{1}{3}} \right)^{r - 2}} ;
Therefore, the geometric progression can be written as ( Since we have to calculate the first 2020 terms) ;
a1+a2+a3+a4+...........+a20=2+23+23(13)+23(132)+........+23(1318)\Rightarrow {a_1} + {a_2} + {a_3} + {a_4} + ........... + {a_{20}} = 2 + \dfrac{2}{3} + \dfrac{2}{3}\left( {\dfrac{1}{3}} \right) + \dfrac{2}{3}\left( {\dfrac{1}{{{3^2}}}} \right) + ........ + \dfrac{2}{3}\left( {\dfrac{1}{{{3^{18}}}}} \right)
The above geometric progression can also be as;
2+23[1+13+(13)2+(13)3+.....(13)18]\Rightarrow 2 + \dfrac{2}{3}\left[ {1 + \dfrac{1}{3} + {{\left( {\dfrac{1}{3}} \right)}^2} + {{\left( {\dfrac{1}{3}} \right)}^3} + .....{{\left( {\dfrac{1}{3}} \right)}^{18}}} \right]
r=120ar=S20\Rightarrow \sum\limits_{r = 1}^{20} {{a_r}} = {S_{20}}
We know that for a geometric progression a+ar+ar2+ar3+arna + ar + a{r^2} + a{r^3} + a{r^n} , the formula of sum of n-terms of G.P. is given by;

Sn=a[(rn1)r1] if r1 and r1 ......(2) \Rightarrow {S_n} = a\left[ {\dfrac{{\left( {{r^n} - 1} \right)}}{{r - 1}}} \right]{\text{ if }}r \ne 1{\text{ and }}r \succ 1{\text{ }}......\left( 2 \right)
Sn=a[(1rn)1r] if r1 and r1 ......(3)\Rightarrow {S_n} = a\left[ {\dfrac{{\left( {1 - {r^n}} \right)}}{{1 - r}}} \right]{\text{ if }}r \ne 1{\text{ and }}r \prec 1{\text{ }}......\left( 3 \right)
Since, r=13r = \dfrac{1}{3} here means r1r \prec 1 ; therefore we will use the formula specified in equation (3)\left( 3 \right) ;
r=120ar=a1(1r20)1r\Rightarrow \sum\limits_{r = 1}^{20} {{a_r}} = \dfrac{{{a_1}\left( {1 - {r^{20}}} \right)}}{{1 - r}}
r=120ar=2(1(13)20)113\Rightarrow \sum\limits_{r = 1}^{20} {{a_r}} = \dfrac{{2\left( {1 - {{\left( {\dfrac{1}{3}} \right)}^{20}}} \right)}}{{1 - \dfrac{1}{3}}}
Simplifying the above expression, we get;
r=120ar=2(11320)23\Rightarrow \sum\limits_{r = 1}^{20} {{a_r}} = \dfrac{{2\left( {1 - \dfrac{1}{{{3^{20}}}}} \right)}}{{\dfrac{2}{3}}}
On further simplification;
r=120ar=3[11320]\Rightarrow \sum\limits_{r = 1}^{20} {{a_r}} = 3\left[ {1 - \dfrac{1}{{{3^{20}}}}} \right]
Therefore, the correct answer for this question is option (2)\left( 2 \right).

Note:
The nth{n^{th}} term of a G.P. is given by an=arn1{a_n} = a{r^{n - 1}} ( the first term of a G.P. is aa which equals ar0a{r^0}) . A geometric series can be finite or infinite . We have discussed the formula to calculate the sum of finite geometric series above. The sum of infinite geometric series is given by n=0(arn)=a(11r)\sum\limits_{n = 0}^\infty {\left( {a{r^n}} \right)} = a\left( {\dfrac{1}{{1 - r}}} \right) such that 0r10 \prec r \prec 1 .