Solveeit Logo

Question

Mathematics Question on Sequence and series

For a sequence an,a1=2\\{a_n\\},a_1=2 and n+1an=13\frac{n+1}{a_n}=\frac{1}{3}. Then r=120ar\displaystyle\sum_{r=1}^{20}a_r is

A

202[4+19×3]\frac{20}{2}[4+19\times3]

B

3(11320)3\left(1-\frac{1}{3^{20}}\right)

C

2(1320)2(1-3^{20})

D

none of these.

Answer

3(11320)3\left(1-\frac{1}{3^{20}}\right)

Explanation

Solution

an+1an=13\frac{a_{n+1}}{a_{n}} = \frac{1}{3} \Rightarrow Common ratio =13=R= \frac{1}{3} = R (say) First term =a1=2= a_{1}=2 r=020ar=a1[1R20]1R=2[1(13)20]113 \sum\limits_{r=0}^{20} a_{r} = \frac{a_{1}\left[1-R^{20}\right]}{1-R} = \frac{2\left[1-\left(\frac{1}{3}\right)^{20}\right]}{1-\frac{1}{3}} =2[11320]23=3[11320] = \frac{2\left[1-\frac{1}{3^{20}}\right]}{\frac{2}{3}} = 3\left[1-\frac{1}{3^{20}}\right]