Solveeit Logo

Question

Quantitative Aptitude Question on Logarithms

For a real number xx , if 12,log3(2x9)log34\frac{1}{2},\frac{log_3(2^x-9)}{log_34}, and log5(2x+172)log54\frac{log_5\bigg(2^x+\frac{17}{2}\bigg)}{log_54} are in an arithmetic progression, then the common difference is

A

log4(232)log_4\bigg(\frac{23}{2}\bigg)

B

log4(32)log_4\bigg(\frac{3}{2}\bigg)

C

log47log_47

D

log4(72)log_4\bigg(\frac{7}{2}\bigg)

Answer

log4(72)log_4\bigg(\frac{7}{2}\bigg)

Explanation

Solution

log3(2x9)log34\frac{log_3(2^x-9)}{log_34} can be written as log4(2x9)log_4(2^x-9), and log5(2x+172)log54\frac{log_5\bigg(2^x+\frac{17}{2}\bigg)}{log_54} can be written as log4(2x+172)log_4\bigg(2^x+\frac{17}{2}\bigg)
Hence, 2log4(2x9)=12+log4(2x+172)2log_4(2^x-9)=\frac12+log_4\bigg(2^x+\frac{17}{2}\bigg)
12\frac12 can be written as log42log_42
Therefore,
2log4(2x9)=log4(2x+172)2log_4(2^x-9)=log_4\bigg(2^x+\frac{17}{2}\bigg)

log4(2x9)2=log4(2x+172)log_4(2^x-9)^2=log_4\bigg(2^x+\frac{17}{2}\bigg)

(2x9)2=2(2x+172)(2^x-9)^2=2(2^x+\frac{17}{2})
22x18.2x+81=2.2x+172^{2x}-18.2^x+81=2.2^x+17
2.22x20.2x+64=02.2^{2x}-20.2^x+64=0
2.22x16.2x4.2x+64=02.2^{2x}-16.2^x-4.2^x+64=0
2x(2x16)4(2x16)=02^x(2^x-16)-4(2^x-16)=0
(2x4)(2x16)=0(2^x-4)(2^x-16)=0
The values of 2x2^x cant be 4 (log will be undefined), which implies The value of 2x2^x is 16.
Therefore, the common difference,
=log4(2x9)log42=log_4 (2^x — 9) — log_42
=log47log42=log4(72)=log_4 7 — log_4 2 = log_4 (\frac72)

So, the correct option is (D): log4(72)log_4\bigg(\frac{7}{2}\bigg).