Question
Quantitative Aptitude Question on Logarithms
For a real number x , if 21,log34log3(2x−9), and log54log5(2x+217) are in an arithmetic progression, then the common difference is
log4(223)
log4(23)
log47
log4(27)
log4(27)
Solution
log34log3(2x−9) can be written as log4(2x−9), and log54log5(2x+217) can be written as log4(2x+217)
Hence, 2log4(2x−9)=21+log4(2x+217)
21 can be written as log42
Therefore,
2log4(2x−9)=log4(2x+217)
log4(2x−9)2=log4(2x+217)
(2x−9)2=2(2x+217)
22x−18.2x+81=2.2x+17
2.22x−20.2x+64=0
2.22x−16.2x−4.2x+64=0
2x(2x−16)−4(2x−16)=0
(2x−4)(2x−16)=0
The values of 2x cant be 4 (log will be undefined), which implies The value of 2x is 16.
Therefore, the common difference,
=log4(2x—9)—log42
=log47—log42=log4(27)
So, the correct option is (D): log4(27).