Solveeit Logo

Question

Quantitative Aptitude Question on Logarithms

For a real number a, if log15a+log32a(log15a)(log32a)=4\frac{log_{15}a+log_{32}a}{(log_{15}a)(log_{32}a)}= 4, then a must lie in the range

A

4<a<54 < a < 5

B

3<a<43 < a < 4

C

a>5a > 5

D

2<a<32 < a < 3

Answer

4<a<54 < a < 5

Explanation

Solution

Given: log15a+log32a(log15a)(log32a)=4\frac{log_{15}a+log_{32}a}{(log _{15}a)(log_{32}a)}=4

(logalog15+logalog32)logalog15×logalog32=4⇒ \frac{\left(\frac{loga}{log15}+\frac{loga}{log32}\right)}{\frac{loga}{log15} \times \frac{ loga}{log32} }=4

On solving the above equation,
log  a(log32+log15)=4(loga)2log\space a(log32 +log 15)=4(log a)^ 2
log  a(log32+log15)=log a . 4 logalog\space a(log32 +log 15)=log \ a\ .\ 4\ log a
log32+log15)=4 logalog32 +log 15)=4\ log a
log (32×15)=loga4log\ (32\times 15)=loga^ 4
log 480=loga4log\ 480=loga^ 4
a4=480⇒a^ 4 =480
We know that,
44=2564^4=256
54=6255^4=625
a⇒ a is between 44 and 55.

So, the correct option is (A): 4<a<54 < a < 5