Question
Quantitative Aptitude Question on Logarithms
For a real number a, if (log15a)(log32a)log15a+log32a=4, then a must lie in the range
A
4<a<5
B
3<a<4
C
a>5
D
2<a<3
Answer
4<a<5
Explanation
Solution
Given: (log15a)(log32a)log15a+log32a=4
⇒log15loga×log32loga(log15loga+log32loga)=4
On solving the above equation,
loga(log32+log15)=4(loga)2
loga(log32+log15)=log a . 4 loga
log32+log15)=4 loga
log (32×15)=loga4
log 480=loga4
⇒a4=480
We know that,
44=256
54=625
⇒a is between 4 and 5.
So, the correct option is (A): 4<a<5