Solveeit Logo

Question

Question: For a reaction, $A \rightleftharpoons P$, the plots of [A] and [P] with time at temperatures $T_1$ a...

For a reaction, APA \rightleftharpoons P, the plots of [A] and [P] with time at temperatures T1T_1 and T2T_2 are given below.

If T2>T1T_2 > T_1, the correct statement(s) is (are) (Assume ΔH\Delta H^\ominus and ΔS\Delta S^\ominus are independent of temperature and ratio of lnKlnK at T1T_1 to lnKlnK at T2T_2 is greater than T2/T1T_2/T_1. Here H, S, G and K are enthalpy, entropy, Gibbs energy and equilibrium constant, respectively)

A

ΔH<0\Delta H^\ominus < 0, ΔS<0\Delta S^\ominus < 0

B

ΔG<0\Delta G^\ominus < 0, ΔH>0\Delta H^\ominus > 0

C

ΔG<0\Delta G^\ominus < 0, ΔS<0\Delta S^\ominus < 0

D

ΔG<0\Delta G^\ominus < 0, ΔS>0\Delta S^\ominus > 0

Answer

ΔG<0\Delta G^\ominus < 0, ΔS>0\Delta S^\ominus > 0

Explanation

Solution

At T1T_1, [A]eq>[P]eq[A]_{eq} > [P]_{eq}, so K1<1K_1 < 1. At T2T_2, [A]eq<[P]eq[A]_{eq} < [P]_{eq}, so K2>1K_2 > 1. Since T2>T1T_2 > T_1 and KK increases with temperature, the forward reaction is endothermic (ΔH>0\Delta H^\ominus > 0). Since K2>1K_2 > 1, the reaction is spontaneous at T2T_2, so ΔG(T2)<0\Delta G^\ominus(T_2) < 0. Using ΔG=ΔHTΔS\Delta G^\ominus = \Delta H^\ominus - T \Delta S^\ominus, we have ΔG<0\Delta G^\ominus < 0 and ΔH>0\Delta H^\ominus > 0. Thus, ΔHTΔS<0\Delta H^\ominus - T \Delta S^\ominus < 0, which implies ΔH<TΔS\Delta H^\ominus < T \Delta S^\ominus. Since ΔH>0\Delta H^\ominus > 0, for this to hold, ΔS\Delta S^\ominus must be positive (ΔS>0\Delta S^\ominus > 0). Therefore, ΔG<0\Delta G^\ominus < 0 and ΔS>0\Delta S^\ominus > 0.