Solveeit Logo

Question

Chemistry Question on Equilibrium

For a reaction, AP{A \rightleftharpoons P}, the plots of [A] and [P] with time at temperatures T1T_1 and T2T_2 are given below. If T2>T1T_2 > T_1, the correct statement(s) is (are) (Assume ΔH\Delta H^{\ominus} and ΔS\Delta S^{\ominus} are independent of temperature and ratio of lnK at T1T_1 to lnK at T2T_2 is greater than T2T1\frac{T_2}{T_1} . Here H,S,GH, S, G and KK are enthalpy, entropy, Gibbs energy and equilibrium constant, respectively.)

A

ΔH<0,ΔS<0\Delta H^{\ominus} < 0 , \Delta S^{\ominus} < 0

B

ΔG<0,ΔH>0\Delta G^{\ominus} < 0 , \Delta H^{\ominus} > 0

C

ΔG<0,ΔS<0\Delta G^{\ominus} < 0 , \Delta S^{\ominus} < 0

D

ΔG<0,ΔS>0\Delta G^{\ominus} < 0 , \Delta S^{\ominus} > 0

Answer

ΔG<0,ΔS<0\Delta G^{\ominus} < 0 , \Delta S^{\ominus} < 0

Explanation

Solution

The correct answer is option (C) : ΔG<0,ΔS<0\Delta G^{\ominus} < 0 , \Delta S^{\ominus} < 0
AP{A \rightleftharpoons P}
given T2>T1T_2 > T_1
InK1InK2>T2T1\frac{In K_{1}}{In K_{2}} > \frac{T_{2}}{T_{1} }
T1Ink1>T2Ink2\Rightarrow T_{1} In k_{1} > T_{2} In k_{2}
ΔG1>\-ΔG2\Rightarrow - \Delta G^{\circ}_{1} > \- \Delta G^{\circ}_{2}
(ΔH+T1ΔS)>(ΔH+T2ΔS)\Rightarrow \left(-\Delta H^{\circ} + T_{1}\Delta S^{\circ}\right) > \left( - \Delta H^{\circ} + T_{2} \Delta S^{\circ} \right)
T1ΔS>T2ΔS\Rightarrow T_{1} \Delta S^{\circ} > T_{2} \Delta S^{\circ}
ΔS<0\Rightarrow \Delta S^{\circ} < 0