Solveeit Logo

Question

Question: For a reaction A 2B, rate of disappearance of 'A' related to the rate of appearance of 'B' by the ex...

For a reaction A 2B, rate of disappearance of 'A' related to the rate of appearance of 'B' by the expression.

A

d[A]dt=14d[B]dt- \frac{d\lbrack A\rbrack}{dt} = \frac{1}{4}\frac{d\lbrack B\rbrack}{dt}

B

d[A]dt=d[B]dt- \frac{d\lbrack A\rbrack}{dt} = \frac{d\lbrack B\rbrack}{dt}

C

d[A]dt=4d[B]dt- \frac{d\lbrack A\rbrack}{dt} = 4\frac{d\lbrack B\rbrack}{dt}

D

d[A]dt=12d[B]dt- \frac{d\lbrack A\rbrack}{dt} = \frac{1}{2}\frac{d\lbrack B\rbrack}{dt}

Answer

d[A]dt=14d[B]dt- \frac{d\lbrack A\rbrack}{dt} = \frac{1}{4}\frac{d\lbrack B\rbrack}{dt}

Explanation

Solution

12A2B\frac{1}{2}A\overset{\quad\quad}{\rightarrow}2B

11/2d(A)dt=12d(B)dt- \frac{1}{1/2}\frac{d(A)}{dt} = \frac{1}{2}\frac{d(B)}{dt}

d(A)dt=14d(B)dt- \frac { \mathrm { d } ( \mathrm { A } ) } { \mathrm { dt } } = \frac { 1 } { 4 } \frac { \mathrm { d } ( \mathrm { B } ) } { \mathrm { dt } }