Solveeit Logo

Question

Question: For a reaction $2NH_3 \longrightarrow N_2 + 3H_2$, it is observed that $-\frac{d[NH_3]}{dt} = k_1[NH...

For a reaction 2NH3N2+3H22NH_3 \longrightarrow N_2 + 3H_2, it is observed that d[NH3]dt=k1[NH3]-\frac{d[NH_3]}{dt} = k_1[NH_3]; +d[N2]dt=k2[NH3]+\frac{d[N_2]}{dt} = k_2[NH_3] and +d[H2]dt=k3[NH3]+\frac{d[H_2]}{dt} = k_3[NH_3]

The correct relation between k1k_1, k2k_2 and k3k_3 is:

A

k_1 = k_2 = k_3

B

2k_1 = 3k_2 = 6k_3

C

3k_1 = 6k_2 = 2k_3

D

6k_1 = 3k_2 = 2k_3

Answer

3k_1 = 6k_2 = 2k_3

Explanation

Solution

The reaction is 2NH3N2+3H22NH_3 \longrightarrow N_2 + 3H_2. The rate of the reaction can be expressed in terms of the rate of change of concentration of each species, divided by its stoichiometric coefficient.

Rate =12d[NH3]dt=+d[N2]dt=+13d[H2]dt= -\frac{1}{2}\frac{d[NH_3]}{dt} = +\frac{d[N_2]}{dt} = +\frac{1}{3}\frac{d[H_2]}{dt}.

We are given:

d[NH3]dt=k1[NH3]-\frac{d[NH_3]}{dt} = k_1[NH_3]

+d[N2]dt=k2[NH3]+\frac{d[N_2]}{dt} = k_2[NH_3]

+d[H2]dt=k3[NH3]+\frac{d[H_2]}{dt} = k_3[NH_3]

Substitute:

Rate =12k1[NH3]=k2[NH3]=13k3[NH3]= \frac{1}{2}k_1[NH_3] = k_2[NH_3] = \frac{1}{3}k_3[NH_3].

Therefore, 12k1=k2=13k3\frac{1}{2}k_1 = k_2 = \frac{1}{3}k_3.

Multiply by 6: 3k1=6k2=2k33k_1 = 6k_2 = 2k_3.