Solveeit Logo

Question

Differential Equations Question on Differential Equations

For a ∈ ℝ, let ya(x) be the solution of the differential equation
dydx+2y=11+x2\frac{dy}{dx}+2y=\frac{1}{1+x^2} for x ∈ R\R
satisfying y(0) = a. Then, which one of the following is TRUE ?

A

limxya(x)=0\lim\limits_{x\rightarrow \infin}y_a(x)=0 for every a ∈ R\R

B

limxya(x)=1\lim\limits_{x\rightarrow \infin}y_a(x)=1 for every a ∈ R\R

C

There exists an a ∈ ℝ such that limxya(x)\lim\limits_{x \rightarrow \infin}y_a(x) exists but its value is different from 0 and 1

D

There exists an a ∈ ℝ for which limxya(x)\lim \limits_{x \rightarrow \infin}y_a(x) does not exist

Answer

limxya(x)=0\lim\limits_{x\rightarrow \infin}y_a(x)=0 for every a ∈ R\R

Explanation

Solution

The correct option is (A) : limxya(x)=0\lim\limits_{x\rightarrow \infin}y_a(x)=0 for every a ∈ R\R.