Solveeit Logo

Question

Mathematics Question on Sum of First n Terms of an AP

For a positive integer n, let fn(θ)=(tanθ2)(1+secθ)(1+sec2θ)(1+sec22θ)...(1+sec2nθ),thenf_n(\theta)=\Bigg(tan\frac{\theta}{2}\Bigg)(1+sec \theta)(1+sec 2\theta)(1+ sec 2^2 \theta)... (1+sec 2^n \theta), then

A

f2(tanθ16)=1f_2\Bigg(tan\frac{\theta}{16}\Bigg)=1

B

f3(tanθ32)=1f_3\Bigg(tan\frac{\theta}{32}\Bigg)=1

C

f4(tanθ64)=1f_4\Bigg(tan\frac{\theta}{64}\Bigg)=1

D

f5(tanθ128)=1f_5\Bigg(tan\frac{\theta}{128}\Bigg)=1

Answer

f5(tanθ128)=1f_5\Bigg(tan\frac{\theta}{128}\Bigg)=1

Explanation

Solution

Multiplicative loop is very important approach in IIT
Mathematics
(tanθ2)(1+secθ)=sinθ/2cosθ/2[1+1cosθ]\Bigg(tan\frac{\theta}{2}\Bigg)(1+sec \theta)=\frac{sin \theta/2}{cos \theta/2}\Bigg[1+\frac{1}{cos \theta}\Bigg]
=(sinθ/2)2cos2θ/2(cosθ/2)2cosθ=\frac{(sin \theta/2)2 cos^2 \theta/2}{(cos \theta/2)2 cos \theta}
=(2sinθ/2)cosθ/2cosθ=sinθcosθ=tantheta=\frac{(2 sin \theta/2)cos \theta/2}{cos \theta}=\frac{sin \theta}{cos \theta}=tan theta
fn(θ)=(tanθ/2)(1+secθ)\therefore f_n(\theta)=(tan \theta/2)(1+sec\theta)
=(1+sec2θ)(1+sec22θ)...(1+sec2nθ)=(1+sec 2\theta)(1+sec2^2\theta)...(1+sec 2^n \theta)
=(tanθ)(1+sec2θ)(1+sec22θ)(1+sec22θ)....(1+sec2nθ)=(tan \theta)(1+sec 2 \theta)(1+sec 2^2 \theta)(1+sec 2^2 \theta)....(1+sec 2^n \theta)
tan2θ.(1+sec22θ)...(1+sec2nθ)tan 2\theta.(1+sec2^2 \theta)...(1+sec 2^n \theta)
=tan(2nθ)=tan(2^n \theta)
Now, f2(π16)=tan(22π16)=tan(π4)=1f_2\Bigg(\frac{\pi}{16}\Bigg)=tan\Bigg(2^2\frac{\pi}{16}\Bigg)=tan\Bigg(\frac{\pi}{4}\Bigg)=1
Therefore, (a) is the answer.
f3(π32)=tan(23π32)=tan(π4)=1f_3\Bigg(\frac{\pi}{32}\Bigg)=tan\Bigg(2^3\frac{\pi}{32}\Bigg)=tan\Bigg(\frac{\pi}{4}\Bigg)=1
Therefore, (b) is the answer.
f4(π64)=tan(24π64)=tan(π4)=1f_4\Bigg(\frac{\pi}{64}\Bigg)=tan\Bigg(2^4\frac{\pi}{64}\Bigg)=tan\Bigg(\frac{\pi}{4}\Bigg)=1
Therefore, (c) is the answer.
f5(π128)=tan(25π128)=tan(π4)=1f_5\Bigg(\frac{\pi}{128}\Bigg)=tan\Bigg(2^5\frac{\pi}{128}\Bigg)=tan\Bigg(\frac{\pi}{4}\Bigg)=1
Therefore, (d) is the answer.