Question
Mathematics Question on Sum of First n Terms of an AP
For a positive integer n, let fn(θ)=(tan2θ)(1+secθ)(1+sec2θ)(1+sec22θ)...(1+sec2nθ),then
f2(tan16θ)=1
f3(tan32θ)=1
f4(tan64θ)=1
f5(tan128θ)=1
f5(tan128θ)=1
Solution
Multiplicative loop is very important approach in IIT
Mathematics
(tan2θ)(1+secθ)=cosθ/2sinθ/2[1+cosθ1]
=(cosθ/2)2cosθ(sinθ/2)2cos2θ/2
=cosθ(2sinθ/2)cosθ/2=cosθsinθ=tantheta
∴fn(θ)=(tanθ/2)(1+secθ)
=(1+sec2θ)(1+sec22θ)...(1+sec2nθ)
=(tanθ)(1+sec2θ)(1+sec22θ)(1+sec22θ)....(1+sec2nθ)
tan2θ.(1+sec22θ)...(1+sec2nθ)
=tan(2nθ)
Now, f2(16π)=tan(2216π)=tan(4π)=1
Therefore, (a) is the answer.
f3(32π)=tan(2332π)=tan(4π)=1
Therefore, (b) is the answer.
f4(64π)=tan(2464π)=tan(4π)=1
Therefore, (c) is the answer.
f5(128π)=tan(25128π)=tan(4π)=1
Therefore, (d) is the answer.