Solveeit Logo

Question

Mathematics Question on Sequence and series

For a positive integer n let a(n)=1+12+13+14+...+1(2n)1,a (n) = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + ...+ \frac{1}{(2^n)-1}, then

A

a(100)100a\, (100) \le 100

B

a(200)100a\, (200) \le 100

C

a(100)>100a\, (100) > 100

D

a(200)>100a\, (200) > 100

Answer

a(200)>100a\, (200) > 100

Explanation

Solution

Given, a(n)=1+12+13+14+...+1(2n)1a\, (n) = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + ...+ \frac{1}{(2^n)-1}
=1+(12+13)+(14+...+17)+(18+...+115)\, \, \, \, \, = 1 + \bigg(\frac{1}{2} + \frac{1}{3}\bigg) + \bigg(\frac{1}{4} + ...+ \frac{1}{7}\bigg)+\bigg(\frac{1}{8} + ...+ \frac{1}{15}\bigg)
\hspace50mm + ...+\bigg(\frac{1}{2^{n-1}} + ...+ \frac{1}{2^n - 1}\bigg)
<1+(12+12)+(14+14+...+14)+(18+18+...+18)\, \, \, \, \, < 1 + \bigg(\frac{1}{2} + \frac{1}{2}\bigg) + \bigg(\frac{1}{4}+ \frac{1}{4}+ ...+ \frac{1}{4}\bigg)+\bigg(\frac{1}{8} +\frac{1}{8}+ ...+ \frac{1}{8}\bigg)
\hspace50mm \, + ...+\bigg(\frac{1}{2^{n-1}} + ...+ \frac{1}{2^n - 1}\bigg)
\hspace20mm \, = 1 + \frac{2}{2} + \frac{4}{4} + \frac{8}{8} + ...+ \frac{2^n-1}{2^n-1}
\hspace20mm \, \underbrace{ = 1 + 1 + 1 + 1 \cdots + 1 = n }_{( n) \, times}
Thus, a(100)100a\, (100) \le 100
Therefore, (a) is the answer.
Again,a(n)=1+12+(13+14)+(15+...+18) a (n) = 1 + \frac{1}{2} + \bigg(\frac{1}{3}+ \frac{1}{4}\bigg)+\bigg(\frac{1}{5} + ...+ \frac{1}{8}\bigg)
\hspace50mm + ...+ \bigg(\frac{1}{2^{n-1}+1}+...+ \frac{1}{2^n}\bigg)-\frac{1}{2^n}
\hspace20mm > 1 + \frac{1}{2} + \bigg(\frac{1}{4}+ \frac{1}{4}\bigg)+\bigg(\frac{1}{8} +\frac{1}{8}+ ...+ \frac{1}{8}\bigg)
\hspace50mm + ...+ \bigg(\frac{1}{2^n}+...+ \frac{1}{2^n}\bigg)-\frac{1}{2^n}
\hspace20mm = 1 + \frac{1}{2} + \frac{2}{4} + \frac{4}{8} + ...+ \frac{2^{n-1}}{2^n}- \frac{1}{2^n}
\hspace20mm \underbrace{ = 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + ...+ \frac{1}{2} - \frac{1}{2^n} =\bigg(1- \frac{1}{2^n}\bigg)+\frac{n}{2}}_{( n) \, times}
Therefore, a(200)>(112200)+2002>100 a\, (200) > \bigg(1-\frac{1}{2^{200}}\bigg) + \frac{200}{2} > 100
Therefore, (d) is also the answer.