Question
Mathematics Question on Sequence and series
For a positive integer n let a(n)=1+21+31+41+...+(2n)−11, then
a(100)≤100
a(200)≤100
a(100)>100
a(200)>100
a(200)>100
Solution
Given, a(n)=1+21+31+41+...+(2n)−11
=1+(21+31)+(41+...+71)+(81+...+151)
\hspace50mm + ...+\bigg(\frac{1}{2^{n-1}} + ...+ \frac{1}{2^n - 1}\bigg)
<1+(21+21)+(41+41+...+41)+(81+81+...+81)
\hspace50mm \, + ...+\bigg(\frac{1}{2^{n-1}} + ...+ \frac{1}{2^n - 1}\bigg)
\hspace20mm \, = 1 + \frac{2}{2} + \frac{4}{4} + \frac{8}{8} + ...+ \frac{2^n-1}{2^n-1}
\hspace20mm \, \underbrace{ = 1 + 1 + 1 + 1 \cdots + 1 = n }_{( n) \, times}
Thus, a(100)≤100
Therefore, (a) is the answer.
Again,a(n)=1+21+(31+41)+(51+...+81)
\hspace50mm + ...+ \bigg(\frac{1}{2^{n-1}+1}+...+ \frac{1}{2^n}\bigg)-\frac{1}{2^n}
\hspace20mm > 1 + \frac{1}{2} + \bigg(\frac{1}{4}+ \frac{1}{4}\bigg)+\bigg(\frac{1}{8} +\frac{1}{8}+ ...+ \frac{1}{8}\bigg)
\hspace50mm + ...+ \bigg(\frac{1}{2^n}+...+ \frac{1}{2^n}\bigg)-\frac{1}{2^n}
\hspace20mm = 1 + \frac{1}{2} + \frac{2}{4} + \frac{4}{8} + ...+ \frac{2^{n-1}}{2^n}- \frac{1}{2^n}
\hspace20mm \underbrace{ = 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + ...+ \frac{1}{2} - \frac{1}{2^n} =\bigg(1- \frac{1}{2^n}\bigg)+\frac{n}{2}}_{( n) \, times}
Therefore, a(200)>(1−22001)+2200>100
Therefore, (d) is also the answer.