Solveeit Logo

Question

Question: For a positive integer n, find the value of \({{\left( 1-i \right)}^{n}}{{\left( 1-\dfrac{1}{i} \rig...

For a positive integer n, find the value of (1i)n(11i)n{{\left( 1-i \right)}^{n}}{{\left( 1-\dfrac{1}{i} \right)}^{n}}.

Explanation

Solution

Hint: Use the fact that we can simplify the expression of the form 1c+id\dfrac{1}{c+id} by multiplying and dividing it by cidc-id. Simplify the given expression using algebraic identity (x+y)(xy)=x2y2\left( x+y \right)\left( x-y \right)={{x}^{2}}-{{y}^{2}} and then further use the fact that i=1i=\sqrt{-1} to calculate higher powers of ii.

Complete step-by-step solution -
We have to calculate the value of (1i)n(11i)n{{\left( 1-i \right)}^{n}}{{\left( 1-\dfrac{1}{i} \right)}^{n}} for any positive integer n.
To do so, we will first simplify the expression 11i1-\dfrac{1}{i}.
We know that we can simplify the expression of the form 1c+id\dfrac{1}{c+id} by multiplying and dividing it by cidc-id.
So, we can rewrite the expression 11i1-\dfrac{1}{i} as 11i=1(1i×ii)1-\dfrac{1}{i}=1-\left( \dfrac{1}{i}\times \dfrac{-i}{-i} \right).
Thus, we have 11i=1(1i×ii)=1ii21-\dfrac{1}{i}=1-\left( \dfrac{1}{i}\times \dfrac{-i}{-i} \right)=1-\dfrac{i}{{{i}^{2}}}.
We know that i=1i=\sqrt{-1}. Thus, we have i2=(1)2=1{{i}^{2}}={{\left( \sqrt{-1} \right)}^{2}}=-1.
So, we can rewrite the expression 11i1-\dfrac{1}{i} as 11i=1(1i×ii)=1ii2=1i(1)=1+i1-\dfrac{1}{i}=1-\left( \dfrac{1}{i}\times \dfrac{-i}{-i} \right)=1-\dfrac{i}{{{i}^{2}}}=1-\dfrac{i}{\left( -1 \right)}=1+i.
Thus, we can rewrite the expression (1i)n(11i)n{{\left( 1-i \right)}^{n}}{{\left( 1-\dfrac{1}{i} \right)}^{n}} as (1i)n(11i)n=(1i)n(1+i)n{{\left( 1-i \right)}^{n}}{{\left( 1-\dfrac{1}{i} \right)}^{n}}={{\left( 1-i \right)}^{n}}{{\left( 1+i \right)}^{n}}.
Simplifying the above expression, we have (1i)n(11i)n=(1i)n(1+i)n=[(1+i)(1i)]n{{\left( 1-i \right)}^{n}}{{\left( 1-\dfrac{1}{i} \right)}^{n}}={{\left( 1-i \right)}^{n}}{{\left( 1+i \right)}^{n}}={{\left[ \left( 1+i \right)\left( 1-i \right) \right]}^{n}}.
We know the algebraic identity (x+y)(xy)=x2y2\left( x+y \right)\left( x-y \right)={{x}^{2}}-{{y}^{2}}.
Thus, we have (1+i)(1i)=12i2\left( 1+i \right)\left( 1-i \right)={{1}^{2}}-{{i}^{2}}.
We know that i=1i=\sqrt{-1}. Thus, we have i2=(1)2=1{{i}^{2}}={{\left( \sqrt{-1} \right)}^{2}}=-1.
So, we have (1+i)(1i)=12i2=1(1)=1+1=2\left( 1+i \right)\left( 1-i \right)={{1}^{2}}-{{i}^{2}}=1-\left( -1 \right)=1+1=2.
Thus, we can rewrite the expression (1i)n(11i)n=(1i)n(1+i)n=[(1+i)(1i)]n{{\left( 1-i \right)}^{n}}{{\left( 1-\dfrac{1}{i} \right)}^{n}}={{\left( 1-i \right)}^{n}}{{\left( 1+i \right)}^{n}}={{\left[ \left( 1+i \right)\left( 1-i \right) \right]}^{n}} as (1i)n(11i)n=[(1+i)(1i)]n=2n{{\left( 1-i \right)}^{n}}{{\left( 1-\dfrac{1}{i} \right)}^{n}}={{\left[ \left( 1+i \right)\left( 1-i \right) \right]}^{n}}={{2}^{n}}.
Hence, the value of the expression (1i)n(11i)n{{\left( 1-i \right)}^{n}}{{\left( 1-\dfrac{1}{i} \right)}^{n}} is 2n{{2}^{n}}.

Note: We can substitute any integer value of n to calculate the value of the given expression. We can’t solve this question without simplifying the expression 11i1-\dfrac{1}{i} and using the algebraic identities. We can write any complex number in the form a+iba+ib, where ibib is the imaginary part and aa is the real part.