Solveeit Logo

Question

Question: For a point \[P\] in the plane, let \({d_1}\left( P \right)\) and \({d_2}\left( P \right)\) be the d...

For a point PP in the plane, let d1(P){d_1}\left( P \right) and d2(P){d_2}\left( P \right) be the distance of the point PP from the lines xy=0x - y = 0 and x+y=0x + y = 0 respectively. The area of the region R consisting of all the points PP lying in the first quadrant of the plane and satisfying 2d1(P)+d2(P)42 \leqslant {d_1}\left( P \right) + {d_2}\left( P \right) \leqslant 4 is
A. 4
B. 6
C. 10
D. 16

Explanation

Solution

Two Dimensional Standard equation of the straight line:
Ax+By+C=0Ax + By + C = 0
The distance between a point A(x0,y0)A\left( {{x_0},{y_0}} \right) is given by the formula:
d=Ax0+By0+CA2+B2d = \left| {\dfrac{{A{x_0} + B{y_0} + C}}{{\sqrt {{A^2} + {B^2}} }}} \right|
It is stated that d1(P){d_1}\left( P \right) and d2(P){d_2}\left( P \right) are the distances of a point P from a straight line, use the distance formula between point and straight line to calculate their values.
Solve the given inequality and try to draw its graph.
Calculating areas from the graph is easy sometimes. Remember that the coordinate axes, y-axis, and x-axis are mutually perpendicular, therefore the line drawn vertical on these axes fall at 90{90^ \circ }
The solution region is the common area satisfying all inequality equations.

Complete step-by-step answer:
Draw the graphs of xy=0x - y = 0 and x+y=0x + y = 0.

Given that d1(P){d_1}\left( P \right) is the distance of the point PP from the lines xy=0x - y = 0
Let (x0,y0)\left( {{x_0},{y_0}} \right) is coordinated of point PP
On comparing xy=0x - y = 0 with the standard equation of the line Ax+By+C=0Ax + By + C = 0
A=1; B=1; C=0.  A = 1; \\\ B = - 1; \\\ C = 0. \\\
Distance between a point P(x0,y0)P\left( {{x_0},{y_0}} \right) from the line xy=0x - y = 0 is:
d=Ax0+By0+CA2+B2d = \left| {\dfrac{{A{x_0} + B{y_0} + C}}{{\sqrt {{A^2} + {B^2}} }}} \right|
x0+(1)y0+012+(1)2\Rightarrow \left| {\dfrac{{{x_0} + \left( { - 1} \right){y_0} + 0}}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2}} }}} \right|
x0y02\Rightarrow \left| {\dfrac{{{x_0} - {y_0}}}{{\sqrt 2 }}} \right|
Thus, d1(P)=x0y02{d_1}\left( P \right) = \left| {\dfrac{{{x_0} - {y_0}}}{{\sqrt 2 }}} \right|
Given that d2(P){d_2}\left( P \right) is the distance of the point PP from the lines x+y=0x + y = 0
On comparing x+y=0x + y = 0 with the standard equation of the line Ax+By+C=0Ax + By + C = 0
A=1; B=1; C=0.  A = 1; \\\ B = 1; \\\ C = 0. \\\
The distance between a point P(x0,y0)P\left( {{x_0},{y_0}} \right) from the line x+y=0x + y = 0 is:
d=Ax0+By0+CA2+B2d = \left| {\dfrac{{A{x_0} + B{y_0} + C}}{{\sqrt {{A^2} + {B^2}} }}} \right|
x0+y0+012+12\Rightarrow \left| {\dfrac{{{x_0} + {y_0} + 0}}{{\sqrt {{1^2} + {1^2}} }}} \right|
x0+y02\Rightarrow \left| {\dfrac{{{x_0} + {y_0}}}{{\sqrt 2 }}} \right|
Thus, d2(P)=x0+y02{d_2}\left( P \right) = \left| {\dfrac{{{x_0} + {y_0}}}{{\sqrt 2 }}} \right|
d1(P)+d2(P)\Rightarrow {d_1}\left( P \right) + {d_2}\left( P \right) =x0y02+x0+y02 = \left| {\dfrac{{{x_0} - {y_0}}}{{\sqrt 2 }}} \right| + \left| {\dfrac{{{x_0} + {y_0}}}{{\sqrt 2 }}} \right|
Solve the given inequality:
2d1(P)+d2(P)42 \leqslant {d_1}\left( P \right) + {d_2}\left( P \right) \leqslant 4
2x0y02+x0+y0242 \leqslant \left| {\dfrac{{{x_0} - {y_0}}}{{\sqrt 2 }}} \right| + \left| {\dfrac{{{x_0} + {y_0}}}{{\sqrt 2 }}} \right| \leqslant 4
22(x0y0+x0+y0)422\sqrt 2 \leqslant \left( {\left| {{x_0} - {y_0}} \right| + \left| {{x_0} + {y_0}} \right|} \right) \leqslant 4\sqrt 2
Let (x0>y0)\left( {{x_0} > {y_0}} \right)

22(x0+x0)42 22(2x0)42  \Rightarrow 2\sqrt 2 \leqslant \left( {{x_0} + {x_0}} \right) \leqslant 4\sqrt 2 \\\ \Rightarrow 2\sqrt 2 \leqslant \left( {2{x_0}} \right) \leqslant 4\sqrt 2 \\\

2x022\Rightarrow \sqrt 2 \leqslant {x_0} \leqslant 2\sqrt 2
Let (x0<y0)\left( {{x_0} < {y_0}} \right)

22(y0+y0)42 22(2y0)42  \Rightarrow 2\sqrt 2 \leqslant \left( {{y_0} + {y_0}} \right) \leqslant 4\sqrt 2 \\\ \Rightarrow 2\sqrt 2 \leqslant \left( {2{y_0}} \right) \leqslant 4\sqrt 2 \\\

2y022\Rightarrow \sqrt 2 \leqslant {y_0} \leqslant 2\sqrt 2
Draw the graph of inequalities:
For inequality 2x0\sqrt 2 \leqslant {x_0}
Let x0=2{x_0} = \sqrt 2
Draw the vertical line at x0=2{x_0} = \sqrt 2
The feasible region (or solution region) of inequality 2x0\sqrt 2 \leqslant {x_0} is the right side of the line x0=2{x_0} = \sqrt 2
For inequality x022{x_0} \leqslant 2\sqrt 2
Let x0=22{x_0} = 2\sqrt 2
Draw the vertical line at x0=22{x_0} = 2\sqrt 2
The feasible region (or solution region) of inequality x022{x_0} \leqslant 2\sqrt 2 is the left side of the line x0=22{x_0} = 2\sqrt 2
Thus the feasible region of the inequality 2x022\sqrt 2 \leqslant {x_0} \leqslant 2\sqrt 2 is the area between the vertical lines x0=2{x_0} = \sqrt 2 and x0=22{x_0} = 2\sqrt 2
For inequality 2y0\sqrt 2 \leqslant {y_0}
Let y0=2{y_0} = \sqrt 2
Draw the horizontal line at y0=2{y_0} = \sqrt 2
The feasible region (or solution region) of inequality 2y0\sqrt 2 \leqslant {y_0} is upward of the line y0=2{y_0} = \sqrt 2
For inequality y022{y_0} \leqslant 2\sqrt 2
Let y0=22{y_0} = 2\sqrt 2
Draw the horizontal line at y0=22{y_0} = 2\sqrt 2
The feasible region (or solution region) of inequality y022{y_0} \leqslant 2\sqrt 2 is downward of the line y0=22{y_0} = 2\sqrt 2
Thus the feasible region of the inequality 2y022\sqrt 2 \leqslant {y_0} \leqslant 2\sqrt 2 is the area between the horizontal lines y0=2{y_0} = \sqrt 2 and y0=22{y_0} = 2\sqrt 2

The area of the region R consisting of all the points PP lying in the first quadrant of the plane
and satisfying 2d1(P)+d2(P)42 \leqslant {d_1}\left( P \right) + {d_2}\left( P \right) \leqslant 4 i.e. 2x022\sqrt 2 \leqslant {x_0} \leqslant 2\sqrt 2 and 2y022\sqrt 2 \leqslant {y_0} \leqslant 2\sqrt 2
In other words, the common area between 2x022\sqrt 2 \leqslant {x_0} \leqslant 2\sqrt 2 and 2y022\sqrt 2 \leqslant {y_0} \leqslant 2\sqrt 2 ; and first quadrant.
Thus, in the following graph, the shaded portion is the required area.

Therefore, the coordinates from the graph are:
A(0,0); B(2,0)C(22,0); D(22,22); E(0,22); F(0,2); G(2,2)A\left( {0,0} \right);{\text{ B}}\left( {\sqrt 2 ,0} \right){\text{; }}C\left( {2\sqrt 2 ,0} \right);{\text{ }}D\left( {2\sqrt 2 ,2\sqrt 2 } \right);{\text{ }}E\left( {0,2\sqrt 2 } \right);{\text{ }}F\left( {0,\sqrt 2 } \right);{\text{ }}G\left( {\sqrt 2 ,\sqrt 2 } \right)
From the graph, Length AC=22 units, CD=22 units, DE=22 units, AE=22 units.AC = 2\sqrt 2 {\text{ }}units,{\text{ }}CD = 2\sqrt 2 {\text{ }}units,{\text{ }}DE = 2\sqrt 2 {\text{ }}units,{\text{ }}AE = 2\sqrt 2 {\text{ }}units.
Thus ACDE forms a square of side =22 units = 2\sqrt 2 {\text{ }}units.
Therefore, the area of square ACDE =side×sidesq.units = {\text{side} \times {side}}sq.units
22×22 sq.units 8 sq.units  \Rightarrow 2\sqrt 2 \times 2\sqrt 2 {\text{ }}sq.units \\\ \Rightarrow 8{\text{ }}sq.units \\\
From the graph, Length AB=2 units, BG=2 units, GF=2 units, AF=2 units.AB = \sqrt 2 {\text{ }}units,{\text{ BG}} = \sqrt 2 {\text{ }}units,{\text{ GF}} = \sqrt 2 {\text{ }}units,{\text{ }}AF = \sqrt 2 {\text{ }}units.
Thus ABGF forms a square of side =2 units = \sqrt 2 {\text{ }}units.
Therefore, the area of square ABGF =side×sidesq.units = {\text{side} \times {side}}sq.units
2×2 sq.units 2 sq.units  \Rightarrow \sqrt 2 \times \sqrt 2 {\text{ }}sq.units \\\ \Rightarrow 2{\text{ }}sq.units \\\
Area of shaded portion = area of square ACDE - area of square ABGF
=82 sq.units =6 sq.units  = 8 - 2{\text{ }}sq.units \\\ = 6{\text{ }}sq.units \\\
The area of the region R consisting of all the points PP lying in the first quadrant of the plane and satisfying 2d1(P)+d2(P)42 \leqslant {d_1}\left( P \right) + {d_2}\left( P \right) \leqslant 4is 6 sq. units.

So, the correct answer is “Option B”.

Note: Students should always remember the quantity “distance” can never be negative. So, the modulus is used in the formula.
d=Ax0+By0+CA2+B2d = \left| {\dfrac{{A{x_0} + B{y_0} + C}}{{\sqrt {{A^2} + {B^2}} }}} \right|
Students might go wrong while shading the solution region of an inequality region. Let’s understand the concept so that you guys won’t make mistakes.
An example is given: Draw the graph of 5x+y1005x + y \leqslant 100
Draw the graph of 5x+y=1005x + y = 100

x020
y1000
           ![](https://www.vedantu.com/question-sets/ade61a3d-8071-4dcb-b13a-350bcfbe67eb7251363672757894416.png)  

Graph: 5x+y=1005x + y = 100
The line 5x+y=1005x + y = 100 divides the XY plane into two parts, one it to the left side of the line and the other is the right side of the line.
Consider a point in the XY plane.
Let the point is the origin (0,0)
Check whether the considered point satisfies the inequality or not.
5x+y1005x + y \leqslant 100
5(0)+(0)100\Rightarrow 5\left( 0 \right) + \left( 0 \right) \leqslant 100
Yes. (0,0) satisfies the inequality 5x+y1005x + y \leqslant 100
The point (0,0) lies on the left side of the inequality 5x+y1005x + y \leqslant 100. Thus the feasible region is the left side of the inequality 5x+y1005x + y \leqslant 100.

           ![](https://www.vedantu.com/question-sets/fce83790-bd8e-4787-8ebf-9175dfbb37813383581776144956111.png)  

Graph: solution region
If the considered point does not satisfy the inequality then the side opposite to the point is the feasible region.