Solveeit Logo

Question

Physics Question on laws of motion

For a particle in uniform circular motion the acceleration a\vec{a} at a point P(R,θ)P\left(R,\,\theta\right) on the circle of radius RR is (here θ\theta is measured from the x-axis)

A

v2Rcosθi^+v2Rsinθj^-\frac{v^{2}}{R} cos\,\theta \,\hat{i} + \frac{v^{2}}{R} sin\,\theta \,\hat{j}

B

v2Rsinθi^+v2Rcosθj^-\frac{v^{2}}{R} sin\,\theta \,\hat{i} + \frac{v^{2}}{R} cos\,\theta \,\hat{j}

C

v2Rcosθi^v2Rsinθj^-\frac{v^{2}}{R} cos\,\theta \,\hat{i} - \frac{v^{2}}{R} sin\,\theta \,\hat{j}

D

v2Ri^+v2Rj^\frac{v^{2}}{R} \hat{i} + \frac{v^{2}}{R} \hat{j}

Answer

v2Rcosθi^v2Rsinθj^-\frac{v^{2}}{R} cos\,\theta \,\hat{i} - \frac{v^{2}}{R} sin\,\theta \,\hat{j}

Explanation

Solution

For a particle in uniform circular motion, a=v2R\vec{a} = \frac{v^{2}}{R} towards centre of circle a=v2R(cosθi^sinθj^)\therefore\quad\vec{a} = -\frac{v^{2}}{R} \left(cos\,\theta \,\hat{i} - sin\,\theta \,\hat{j}\right) ora=v2Rcosθi^v2Rsinθj^\quad\vec{a} = -\frac{v^{2}}{R} cos\,\theta \,\hat{i} - \frac{v^{2}}{R} sin\,\theta \,\hat{j}