Solveeit Logo

Question

Physics Question on Uniform Circular Motion

For a particle in uniform circular motion, the acceleration a at any point P(R , θ) on the circular path of radius R is (when θ is measured from the positive x -axis and v is uniform speed):

A

v2Rsinθi+v2Rcosθj-\frac{v^2}{R}sinθi+\frac{v^2}{R}cosθj

B

v2Rcosθi+v2Rsinθj-\frac{v^2}{R}cosθi+\frac{v^2}{R}sinθj

C

v2Rcosθiv2Rsinθj-\frac{v^2}{R}cosθi-\frac{v^2}{R}sinθj

D

v2Riv2Rj-\frac{v^2}{R}i-\frac{v^2}{R}j

Answer

v2Rsinθi+v2Rcosθj-\frac{v^2}{R}sinθi+\frac{v^2}{R}cosθj

Explanation

Solution

The correct option is (C): v2Rcosθiv2Rsinθj-\frac{v^2}{R}cosθi-\frac{v^2}{R}sinθj.

As the particle in uniform circular motion experiences only centripetal acceleration of magnitude ω2R or

V2R\frac{V^2}{R}

directed towards centre so from diagram.

a=v2Rcosθ(i)+v2Rsin(j)a=\frac{v^2}{R}cosθ(-i)+\frac{v^2}{R}sin(-j)